Albatross

Web Application Framework

Albatross Documentation
Release 1.40

Object Craft

March 15, 2010

CONTENTS

Front Matter 1
Thank you 3
Introduction 5
Installation 7
4.1 PrereqUiSites e e e e e e e e e e e e e e 7
42 Installingo e 7
43 TeStNZ . . v o i e 8
Templates User Guide 9
5.1 Introductionto CGI e 9
5.2 Your First Albatross Program e e e e e e 10
5.3 Introducing Albatross Tags L e e e e e e 11

5.3.1 Eliminating the Application 14
5.4 Building a Useful Application o L e e e 14
5.5 Albatross Macros oo e e e e e e e e 17

5.5.1 Zero Argument Macros v v v i e e e e e e e e e e e e e e e e e e 20

5.5.2 Single Argument Macroso h e e e e e e e e e e e e e 20

5.5.3 Multiple Argument Macroso o e 21

5.54 Nesting Macros o e e e e 21
5.6 Lookup Tables e 22
5.7 White Space Removal in Albatross o e e e 24
5.8 Using Forms to Receive User Input ittt e et 26
5.9 Using Albatross Input Tags o L e e e 27
5.10 Moreonthe <al-select>Tag e 29
5.11 Streaming Application Output tothe Browser, 30
5.12 Displaying Tree Structured Data 31
Guide to Building Applications 33
6.1 Albatross Application Model L 34
6.2 Using Albatross Input Tags (Again) o it 38
6.3 The Popview Application i i i e e e e e e e e e e e 40
6.4 Adding Pagination Supportto Popview L L e 47
6.5 Adding Server-Side Session Supportto Popview oL o oL 48
6.6 Building Applications with Page Modules oL 0oL 51
6.7 Random Access Applications e 53
6.8 The Albatross Session Server L e e e e e 55

6.8.1 Sample Simple Session Server L. e e e e 55

6.8.2 Unix Session Server Daemon L o 55

6.8.3 Server Protocol 56
6.9 Application Deployment Optionsot i e e e 57

6.9.1 CGIDeployment i i i it i e e e e e e e e 58

6.9.2 mod_python Deployment 58

6.93 FastCGIDeployment v i v v i it e e e e e e e 59

6.9.4 Stand-alone Python HTTP Server Deployment 60

6.10 Albatross EXCeptions o i e e e e e e e 60
7 Extensions 63
7.1 Albatross Forms Guide e e e e e e e e e e 63
711 Concepts o e e e 63

7.1.2 Getting started L. L L e 64

7.1.3 Asimpleexample L e e e e e 64

7.1.4 Flowof Control o e e e e e e e e e 66

715 Fieldtypes . . . o o o o e e e e e e e e 66

7.1.6 Amorecomplexexample 67

7.177 Customising Fields oo 68

7.1.8 Attachingbuttonstoaform Lo o 69

7.1.9 Table support e e e e e e e e e e e e e e e e 69
7.1.10 Querying fields beforemerge 73

7.2 Albatross Forms Reference 75
8 Templates Reference 83
8.1 Fake Application Harness e e e e 83
82 Enhanced HTML Tags et e 84
8.2.1 <al—form> e e e e 84

8.2.2 <al-input> e e e e e 85

8.2.3 <al-select> e e e e e e 94

8.2.4 <al-opLion> e e e e e e e e e e e 96

8.2.5 <al-texLarea>™ i i i i e e e e e e e e e e e e e 98

B2.0 <Al=3> . . i e e 100

827 <al—-img> e e e e 102

83 Other HTML Tags o o v i i e e i e 102
8.4 Executionand Control Flow e 103
8.4.1 <al-require> e e e e e e e e e e 104

842 <al-include> e e e e e 104

843 <al-comment> e e e e e 105

844 <al-flush> e e e e 105

845 <al-if>/<al-elif>/<al-else> i it 105

8.4.6 <al-value> i e e e e e e e e e 107

84T <Aal—-eXEC> . . . i e e e e e e e e 108

8.4.8 <al—-for> e e e e e e 109

849 <al-l100KUDP> i i i it e e e e e e e e 115
8.4.10 <al—-dtem> e e e e e e e 116
8411 <al-tree> e e e e e e e e e 117

8.5 Macro Processing e e e e e e e e 121
8.5.1 <Al-MACTO> .« v v i i e e e e e e e e e e e 121

8.5.2 <Al-USEATg> i i i i e e e e e e e 122

8.53 <al-setdefault> e e e e 123

8.54 <al-expand> e e e e e e e e e 124

8.5.5 <al-setarg> i e e e e e 126

9 Developing Custom Tags 127
9.1 albatross.template — Base classes for implementingtags 128
9.1.1 TagObjects o v v i e e e e e e e e e 129

9.1.2 EmptyTag Objects o e e e 129

9.1.3 EnclosingTag Objects o o i it 129

9.1.4 TextODJects v v vt e e e e e e e e 130

9.1.5 Content ObJects o v v v v et e e e e e e e e e e e e 130

10 Mixin Class Reference 131
10.1 ResourceMixin Class 0 e e e e e e 132

10.2 ExecuteMixin Class e 132
10.3 ResponseMixin Class o o v i v v it e e e e e e e e e e e e e e e e 133
10.4 TemplateLoaderMixin CIasses o v v vt i it et e e e e e e e e 134
10.4.1 TemplateLoaderMixin L e 134

10.4.2 CachingTemplateLoaderMixin i 134

10.5 RecorderMixin Classes i i it e e e e e 135
10.5.1 StubRecorderMixin o e e e e 135

10.5.2 NameRecorderMixin o e 135

10.6 NamespaceMixin Class e 136
10.7 SessionContextMixin Classes i v i i i it e e e e e e e e e e e 137
10.7.1 StubSessionMiXin v v v i e e e e e e e e e e e e e e e 137

10.7.2 SessionBase e 138

10.7.3 HiddenFieldSessionMixin i e 138

10.7.4 SessionServerContextMiXin o vttt e e e 139

10.7.5 SessionFileContextMixin i it it e e e e e e e e 139

10.7.6 BranchingSessionMixin 140

10.8 SessionAppMixin Classes oo e e e 141
10.8.1 SessionServerAppMIixXin i e e e e e e e e e e 141

10.8.2 SessionFileAppMixXin o o L i e e e e e e e 141

10.9 PickleSignMixin Classes o . i i it i e e e e e e e e 142
10.10 PageMixin Classes o v i vt it e e e e e 143
10.10.1 PageModuleMixin e e 143
10.10.2 RandomPageModuleMixin o i e e e 144
10.10.3 PageObjectMiXin v v v v it e e e e e e e e e e e e e e e e e 146

10.11 Request Classes . . . v v v v v v i e 147
11 Prepackaged Application and Execution Context Classes 149
11.1 The SimpleContext Execution Context o v v i v v i i i i oo u 149
11.2 The AppContext Base Class o i i ittt e e e 152
11.3 Context classes: o i e e e e e e e e e e e e e e e e e e e 155
11.3.1 The SimpleAppContext Class i i i i ittt 155
11.3.2 The SessionAppContext Class 157
11.3.3 The SessionFileAppContext Class, 160
11.3.4 The BranchingSessionContext Class 162

114 TheApplicationBaseClass o . i i i it e e 164
11.5 Application Classes: o v v vt ittt e e e e e e e 166
11.5.1 The SimpleRpp Class. o i i e e e e e e e e e e e e e e 166
11.52 The SimpleSessionBApp Class i i i i i i it e e 167
11.5.3 The SimpleSessionFileAppClass i i i i i .. 168
11.54 TheModularApp Class i i i it e e e e e e e e 169
11.5.5 TheModularSessionApp Class i i i it i i .. 172
11.5.6 TheModularSessionFileAppClass 174
11.5.7 The RandomModularApp Class i i it e e 175
11.5.8 The RandomModularSessionAppClass 176
11.5.9 The RandomModularSessionFileAppClass 177

12 Summary of Changes 183
12.1 Release 1.40. L . e e e e 183
12.1.1 MajorChanges e 183
12.1.2 BugFixes o e 183
12.1.3 Miscellaneous Changes i e 183

122 Release 1.36 L . e e 184
12.2.1 New Features e 184
12.2.2 Functional Changes e 184
1223 BugFixes o e 185
12.2.4 Miscellaneous Changes i e 185

12.3 Release 1.35 o o L e e e 185
12.3.1 New Features e e 185

12.3.2 Functional Changes v i i e e e e e e e e e e e e 186

1233 BugFixes o e e e e e 186
124 Release 1.33 L L e e e 186
124.1 BugFixes o o e e 186
12.5 Release 1.32 L . . e e 186
125.1 BugFixes o 186
12.6 Release 1.31 L L e 187
12.6.1 BugFixes o i e e e e e e e 187
12.7 Release 1.30 o e 187
12.7.1 Functional Changes e 187
1272 BugFixes o o e 188
12.8 Release 1.20 L L L 188
12.8.1 Functional Changes i it e e e e e e e 189
12.8.2 BugFixes o e e e e e e 189
129 Release 1.11 o . o 0 e e e e e 190
12.9.1 Functional Changes 190
1292 BugFixes o 191
12.10 Release 1.10 o Lo oo e 191
12.10.1 Functional Changes o i i it e e 191
12.10.2 Bug Fixes o . e 194

CHAPTER
ONE

FRONT MATTER

Copyright © 2001-2010 Object Craft All rights reserved. Redistribution and use in source and binary forms,
with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of Object Craft nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Abstract

The Albatross package is a toolkit which assists in the construction of web applications using the Python
language.

See Also:

Python Language Web Site for information on the Python language

Albatross Users Mailing List for discussion regarding application development using Albatross
Albatross Web Site for information on the Albatross package

Albatross Users Wiki for user contributed information concerning Albatross

Apache Web Site for information on the Apache web server

Mod Python Web Site for information on mod_python

FastCGI Web Site for information on FastCGI

http://www.python.org/
http://www.object-craft.com.au/cgi-bin/mailman/listinfo/albatross-users
http://www.object-craft.com.au/projects/albatross/
http://www.object-craft.com.au/projects/albatross/wiki
http://www.apache.org/
http://www.modpython.org/
http://www.fastcgi.com/

Albatross Documentation, Release 1.40

2 Chapter 1. Front Matter

CHAPTER
TWO

THANK YOU

Object Craft wish to thank the following people.

Tim Churches For all of the time he has spent reviewing the documentation and pointing out errors.
Lewis Bergman For a constant stream of documentation fixes and suggestions

Gregory Bond For maintaining the FreeBSD port.

Matt Goodall For the FastCGI and (standard Python) BaseHTTPServer deployment code.

Fabian Fagerholm For building the Debian package.

Albatross Documentation, Release 1.40

4 Chapter 2. Thank you

CHAPTER
THREE

INTRODUCTION

Albatross is a small and flexible toolkit for developing highly stateful web applications. The toolkit is lightweight
enough to use for CGI applications. It provides the following:

Browser based sessions via automatically generated hidden form fields.
Server side sessions via a session server or file based session store.
Implicit form population and browser request handling.

Powerful and extensible templating system which promotes separation of presentation and implementation
for improved program maintainability.

Pagination of sequences and tree browsing are handled implicitly in the templating system.
Macros allow repeated HTML and special effects HTML to be defined in one location.
Lookup tables translate internal program values to arbitrary template code.

Applications can be deployed as either CGI programs or as mod_python module with minor changes to
program mainline. Custom deployment can be achieved by developing your own Request class.

Highly modular application framework which is flexible and extensible which allows many different appli-
cation construction models. Many Application classes are provided and many more are possible.

Comprehensive documentation including many installable samples.

A primary design goal of Albatross is that it be small and easy to use and extend. Most of the toolkit is constructed
from a collection of mixin classes. You are encouraged to look at the code and to think of new ways to combine
the Albatross mixin classes with your own classes.

Object Craft developed Albatross because there was nothing available with the same capabilities which they could
use for consulting work. For this reason the toolkit is important to Object Craft and so is actively maintained and
developed.

Albatross Documentation, Release 1.40

6 Chapter 3. Introduction

CHAPTER
FOUR

INSTALLATION

4.1 Prerequisites

Note that, where possible, you should install packages provided by your distribution, rather than building all the
dependancies yourself.

e Python 2.3 or later.
http://www.python.org/
If you wish to regenerate the documentation, you will also need:
¢ Sphinx 0.6.2 or later.
http://sphinx.pocoo.org/
* LaTeX
Only required if you want to build the PDF or PostScript documentation.
On Ubuntu, install the tex1ive package (and dependancies).
* dia
http://live.gnome.org/Dia
The diagrams in the documentation are edited and rendered to PNG and EPS format using dia version 0.97.
e GraphViz
http://www.graphviz.org/

Used to auto-generate some diagrams.

4.2 Installing

Unpack the package archive to extract the package source:

tar xzf albatross-1.40.tar.gz

This will create an albatross—1.40 subdirectory. Inside the albatross—1.40 directory are a number of
directories:

« albatross

Contains the Python code for the package.
* doc

Contains the documentation source.

* samples

http://www.python.org/
http://sphinx.pocoo.org/
http://live.gnome.org/Dia
http://www.graphviz.org/

Albatross Documentation, Release 1.40

Contains all of the sample programs discussed in this document.
* session-server

Contains a simple session server which works with the Albatross server-side session mixin
classes.

* test
Contains the unit tests.
The Albatross package uses the distutils package so all you need to do is type the following command

as root from the top level directory:

python setup.py install

If you have problems with this step, make sure that you contact the package author so that the installation process
can be made more robust for other people.

If you already have a copy of Albatross installed and wish to test the new release before installing it globally
then you can install an application private copy. If your application is installed in /path/to/pro7j then the
following command will install a copy of Albatross that is only visible to that application:

python setup.py install —--install-lib /path/to/proj —--install-scripts /path/to/proj
If you wish to build the documentation, run:

cd doc
make pdf

Or:

cd doc
make html

4.3 Testing

There are a number of unit tests included in the distribution. These have been developed using the unittest
package which is standard in Python 2.1 and later.

Run the following commands to perform the unit tests:
make test

If you want to do more than run the unit tests, you can start to work your way through the samples which are
presented in this document.

8 Chapter 4. Installation

CHAPTER
FIVE

TEMPLATES USER GUIDE

There are many different ways which you can use Albatross to assist in the construction of a web application. The
purpose of this guide is to slowly introduce the features of Albatross to allow you to learn which features can be
useful in your application.

All of the example programs in this chapter are distributed with the source in the samples/templates direc-
tory.

5.1 Introduction to CGI

This section presents a very simple program which will introduce you to CGI programming. This serves two
purposes; it will verify that your web server is configured to run CGI programs, and it will demonstrate how
simple CGI programming can be.

The sample program from this section is supplied in the samples/templates/simplel directory and can
be installed in your web server cgi-bin directory by running the following commands.

cd samples/templates/simplel
python install.py

The simple.py program is show below.
#!/usr/bin/python

print ’‘Content-Type: text/html’

print

print ' <html>’

print ' <head>’

print ’/ <title>My CGI application</title>’

print ’ </head>’

print ' <body>’

print ’ Hello from my simple CGI application!’
print ’ </body>’

print ' </html>’

You can see the program output by pointing your browser at http://www.object-craft.com.au/cgi-
bin/alsamp/simple1/simple.py.

If after installing the program locally you do not see a page displaying the text “Hello from my simple CGI
application!” then you should look in the web server error log for clues. The location of the error log is specified
by the ErrorLog directive in the Apache configuration. On a Debian Linux system the default location is
/var/log/apache/error.log. While developing web applications you will become intimately familiar
with this file.

Knowing how Apache treats a request for a document in the cgi-bin directory is the key to understanding how
CGI programs work. Instead of sending the document text back to the browser Apache executes the “document”

http://www.object-craft.com.au/cgi-bin/alsamp/simple1/simple.py
http://www.object-craft.com.au/cgi-bin/alsamp/simple1/simple.py

Albatross Documentation, Release 1.40

and sends the “document” output back to the browser. This simple mechanism allows you to write programs which
generate HTML dynamically.

If you view the page source from the simplel.py application in your browser you will note that the first two
lines of output produced by the program are not present. This is because they are not part of the document. The
first line is an HTTP (Hypertext Transfer Protocol) header which tells the browser that the document content is
HTML. The second line is blank which signals the end of HTTP headers and the beginning of the document.

You can build quite complex programs by taking the simple approach of embedding HTML within your appli-
cation code. The problem with doing this is that program development and maintenance becomes a nightmare.
The essential implementation (or business level) logic is lost within a sea of presentation logic. The impact of
embedding HTML in your application can be reduced somewhat by using a package called HTMLgen. !

The other way to make complex web applications manageable is to separate the presentation layer from the
application implementation via a templating system. This is also the Albatross way.

5.2 Your First Albatross Program

This section rewrites the sample CGI program from the previous section as an Albatross program. The program
uses the Albatross templating system to generate the HTML document.

The sample program from this section is supplied in the samples/templates/simple2 directory and can
be installed in your web server cgi—-bin directory by running the following commands.

cd samples/templates/simple2
python install.py

All of the HTML is moved into a template file called simple.html.

<html>
<head>
<title>My CGI application</title>
</head>
<body>
Hello from my second simple CGI application!
</body>
</html>

The simple.py program is then rewritten as shown below.

#!/usr/bin/python
from albatross import SimpleContext

ctx = SimpleContext (’.”)
templ = ctx.load_template(’simple.html’)
templ.to_html (ctx)

print ’‘Content-Type: text/html’
print
ctx.flush_content ()

You can see the program output by pointing your browser at http://www.object-craft.com.au/cgi-
bin/alsamp/simple2/simple.py.

This is probably the most simple application that you can write using Albatross. Let’s analyse the program step-
by-step.

This first line imports the Albatross package and places the SimpleContext into the global namespace.

! HTMLgen can be retrieved from http://starship.python.net/crew/friedrich/ HTMLgen/html/main.html (this URL is currently broken - try
via the Wayback Machine). On Debian or Ubuntu Linux you can install the python-htmlgen package.

10 Chapter 5. Templates User Guide

http://www.object-craft.com.au/cgi-bin/alsamp/simple2/simple.py
http://www.object-craft.com.au/cgi-bin/alsamp/simple2/simple.py
http://starship.python.net/crew/friedrich/HTMLgen/html/main.html
http://web.archive.org/web/20060925091645/http://starship.python.net/crew/friedrich/HTMLgen/html/main.html

Albatross Documentation, Release 1.40

from albatross import SimpleContext

Before we can use Albatross templates we must create an execution context which will be used to load and execute
the template file. The Albatross SimpleContext object should be used in programs which directly load and
execute template files. The SimpleContext constructor has a single argument which specifies a path to the
directory from which template files will be loaded. Before Apache executes a CGI program it sets the current
directory to the directory where that program is located. We have installed the template file in the same directory
as the program, hence the path * . /.

ctx = SimpleContext (’.”)

Once we have an execution context we can load template files. The return value of the execution context
load_template () method is a parsed template.

templ = ctx.load_template (’simple.html’)

Albatross templates are executed in two stages; the first stage parses the template and compiles the embedded
Python expressions, the second actually executes the template.

To execute a template we call it’s to_html () method passing an execution context. Albatross tags access
application data and logic via the execution context. Since the template for the example application does not refer
to any application functionality, we do not need to place anything into the context before executing the template.

templ.to_html (ctx)

Template file output is accumulated in the execution context.
Unless you use one of the Albatross application objects you need to output your own HTTP headers.

print ’'Content-Type: text/html’
print

Finally, you must explicitly flush the context to force the HTML to be written to output. Buffering the output
inside the context allows applications to trap and handle any exception which occurs while executing the template
without any partial output leaking to the browser.

ctx.flush_content ()

5.3 Introducing Albatross Tags

In the previous section we presented a simple Albatross program which loaded and executed a template file to
generate HTML dynamically. In this section we will place some application data into the Albatross execution
context so that the template file can display it.

To demonstrate how Albatross programs separate application and presentation logic we will look at a pro-
gram which displays the CGI program environment. The sample program from this section is supplied in the
samples/templates/simple3 directory and can be installed in your web server cgi-bin directory by
running the following commands.

cd samples/templates/simple3
python install.py

The CGI program simple.py is shown below.

5.3. Introducing Albatross Tags 11

Albatross Documentation, Release 1.40

#!/usr/bin/python
import os
from albatross import SimpleContext

ctx = SimpleContext (’.”)
templ = ctx.load_template(’simple.html’”)

keys = os.environ.keys()
keys.sort ()

ctx.locals.keys = keys
ctx.locals.environ = os.environ

templ.to_html (ctx)

print ’‘Content-Type: text/html’
print
ctx.flush_content ()

The following lines construct a sorted list of all defined environment variables. It makes the display a little nicer
if the values are sorted.

keys = os.environ.keys()
keys.sort ()

The Albatross execution context is constructed with an empty object in the 1ocals member which is used as
a conduit between the application and the toolkit. It is used as the local namespace for expressions evaluated in
template files. To make the environment available to the template file we simply assign to an attribute using a
name of our choosing which can then be referenced by the template file.

ctx.locals.keys = keys
ctx.locals.environ = os.environ

The SimpleContext constructor save a reference (in the globals member) to the global namespace of the
execution context to the globals of the code which called the constructor.

Now the template file simple.html. Two Albatross tags are used to display the application data; <al-for>
and <al-value>.

<html>
<head>
<title>The CGI environment</title>
</head>
<body>
<table>
<al-for iter="name" expr="keys">
<tr>
<td><al-value expr="name.value () "></td>
<td><al-value expr="environ[name.value()]"></td>
<tr>
</al-for>
</table>
</body>
</html>

You can see the program output by pointing your browser at http://www.object-craft.com.au/cgi-
bin/alsamp/simple3/simple.py.

The <al-for> Albatross tag iterates over the list of environment variable names we placed in the keys value
(ctx.locals.keys).

All template file content enclosed by the <al-for> tag is evaluated for each value in the sequence returned by
evaluating the expr attribute. The iter attribute specifies the name of the iterator which is used to retrieve

12 Chapter 5. Templates User Guide

http://www.object-craft.com.au/cgi-bin/alsamp/simple3/simple.py
http://www.object-craft.com.au/cgi-bin/alsamp/simple3/simple.py

Albatross Documentation, Release 1.40

each successive value from the sequence. The toolkit places the iterator object in the 1locals member of the
execution context. Be careful that you do not overwrite application values by using an iterator of the same name
as an application value.

The <al-value> Albatross tag is used to retrieve values from the execution context. The expr attribute can
contain any Python expression which can legally be passed to the Python eval () function when the kind argu-
mentis "eval™".

Deciding where to divide your application between implementation and presentation can be difficult at times. In
the example above, we implemented some presentation logic in the program; we sorted the list of environment
variables. Let’s make a modification which removes that presentation logic from the application.

The simple.py application is shown below.

#!/usr/bin/python
import os
from albatross import SimpleContext

ctx = SimpleContext (’.”)
templ = ctx.load_template(’simple.html’”)

ctx.locals.environ = os.environ
templ.to_html (ctx)

print ’‘Content-Type: text/html’
print
ctx.flush_content ()

Now look at the new simple.html template file. By using the Albatross <al-exec> tag we can prepare a
sorted list of environment variable names for the <al-for> tag.

<html>
<head>
<title>The CGI environment</title>
</head>
<body>
<table>
<al-exec expr="keys = environ.keys(); keys.sort()">
<al-for iter="name" expr="keys">
<tr>
<td><al-value expr="name.value ()"></td>
<td><al-value expr="environ[name.value ()]"></td>
<tr>
</al-for>
</table>
</body>
</html>

You can see the program output by pointing your browser at http://www.object-craft.com.au/cgi-
bin/alsamp/simple4/simple.py.

The <al-exec> tag compiles the contents of the expr tag by passing "exec" as the kind argument. This
means that you can include quite complex Python code in the attribute. Remember that we want to minimise the
complexity of the entire application, not just the Python mainline. If you start placing application logic in the
presentation layer, you will be back to having an unmaintainable mess.

Just for your information, the <al-exec> tag could have been written like this:

<al-exec expr="
keys = environ.keys()
keys.sort ()
">

5.3. Introducing Albatross Tags 13

http://www.object-craft.com.au/cgi-bin/alsamp/simple4/simple.py
http://www.object-craft.com.au/cgi-bin/alsamp/simple4/simple.py

Albatross Documentation, Release 1.40

5.3.1 Eliminating the Application

Let’s revisit our first Albatross application with the simple.py sample program in the
samples/templates/simple5 directory.

#!/usr/bin/python
from albatross import SimpleContext

ctx = SimpleContext (’.”)
templ = ctx.load_template(’simple.html’)
templ.to_html (ctx)

print ’‘Content-Type: text/html’
print
ctx.flush_content ()

Now consider the template file simple.html.

<html>
<head>
<title>The CGI environment</title>
</head>
<body>
<table>
<al-exec expr="
import os
keys = os.environ.keys()
keys.sort ()
">
<al-for iter="name" expr="keys">
<tr>
<td><al-value expr="name.value () "></td>
<td><al-value expr="os.environ[name.value ()]"></td>
<tr>
</al-for>
</table>
</body>
</html>

You can see the program output by pointing your browser at http://www.object-craft.com.au/cgi-
bin/alsamp/simple5/simple.py.

You will notice that we have completely removed any application logic from the Python program. This is a cute
trick for small example programs, but it is definitely a bad idea for any real application.

5.4 Building a Useful Application

In the previous section we saw how Albatross tags can be used to remove presentation logic from your application.
In this section we will see how with a simple program we can serve up a tree of template files.

If you look at the output of the simpled/simple.py program you will notice the following lines:

REQUEST_URI /cgi-bin/alsamp/simpled/simple.py
SCRIPT_FILENAME /usr/lib/cgi-bin/alsamp/simpled/simple.py
SCRIPT_NAME /cgi-bin/alsamp/simpled/simple.py

Now watch what happens when you start appending extra path elements to the end of the URL. Try requesting the
following with your browser: http://www.object-craft.com.au/cgi-bin/alsamp/simple4/simple.py/main.html.

You should see the following three lines:

14 Chapter 5. Templates User Guide

http://www.object-craft.com.au/cgi-bin/alsamp/simple5/simple.py
http://www.object-craft.com.au/cgi-bin/alsamp/simple5/simple.py
http://www.object-craft.com.au/cgi-bin/alsamp/simple4/simple.py/main.html

Albatross Documentation, Release 1.40

REQUEST_URI /cgi-bin/alsamp/simpled/simple.py/main.html
SCRIPT_FILENAME /usr/lib/cgi-bin/alsamp/simpled/simple.py
SCRIPT_NAME /cgi-bin/alsamp/simpled/simple.py

The interesting thing is that Apache is still using the simpled4/simple.py program to process the browser
request. We can use the value of the REQUEST_URI environment variable to locate a template file which will be
displayed.

The sample application in the samples/templates/contentl directory demonstrates serving dynamic
content based upon the requested URI. The program can be installed in your web server cgi-bin directory by
running the following commands.

cd samples/templates/contentl
python install.py

The CGI program content . py is shown below.

#!/usr/bin/python
import os
from albatross import SimpleContext, TemplateloadError

script_name = os.environ[’ SCRIPT_NAME’]
request_uri = os.environ[’REQUEST_URI’]

page = request_uri[len(script_name) + 1:]
if not page or os.path.dirname (page) :
page = ‘main.html’

ctx = SimpleContext (' templ’)
ctx.locals.page = page
try:
templ = ctx.load_template (page)
except TemplateLoadError:
templ = ctx.load_template (' ocops.html’)

templ.to_html (ctx)

print ’‘Content-Type: text/html’
print
ctx.flush_content ()

To demonstrate this application we have three template files; main.html, cops.html, and other.html.

First main.html.

<html>
<head>
<title>Simple Content Management — main page.</title>
</head>
<body>
<hl>Simple Content Management - main page</hl>
<hr noshade>
This is the main page.
</body>
</html>

Now other.html.

<html>

<head>
<title>Simple Content Management - other page.</title>
</head>

5.4. Building a Useful Application 15

Albatross Documentation, Release 1.40

<body>
<hl>Simple Content Management - other page</hl>
<hr noshade>
This is the other page.

</body>

</html>

And finally the page for displaying errors; oops.html.

<html>
<head>

<title>Simple Content Management - error page.</title>
</head>
<body>

<hl>Simple Content Management - error page</hl>

<hr noshade>

<al-if expr="page == ’'oops.html’">

You actually requested the error page!

<al-else>

Sorry, the page <al-value expr="page">

does not exist.

</al-if>
</body>
</html>

Test the program by trying a few requests with your browser:
* http://www.object-craft.com.au/cgi-bin/alsamp/content1/content.py
* http://www.object-craft.com.au/cgi-bin/alsamp/content1/content.py/main.html
* http://www.object-craft.com.au/cgi-bin/alsamp/content1/content.py/other.html
* http://www.object-craft.com.au/cgi-bin/alsamp/content1/content.py/error.html
* http://www.object-craft.com.au/cgi-bin/alsamp/content1/content.py/oops.html

Let’s analyse the program step-by-step. The preamble imports the modules we are going to use.

#!/usr/bin/python
import os
from albatross import SimpleContext, TemplateLoadError

The next part of the program removes the prefix in the SCRIPT_NAME variable from the value in the
REQUEST_URI variable. When removing the script name we add one to the length to ensure that the " /"
path separator between the script and page is also removed. This is important because the execution context
load_template () methoduses os.path.join () to construct a script filename by combining the base_dir
specified in the constructor and the name passed to the 1oad_template () method. If any of the path compo-
nents being joined begin witha " /" then os.path. join () creates an absolute path beginning at the " /".

If no page was specified in the browser request then we use the default page main.html.

script_name = os.environ[’ SCRIPT_NAME’]
request_uri = os.environ[’REQUEST_URI’]
page = request_uri[len(script_name) + 1:]
if not page:

page = 'main.html’

The next section of code creates the Albatross execution context and places the requested filename into the
page local attribute. It then attempts to load the requested file. If the template file does not exist the
load_template () will raise a TemplateLoadError exception. We handle this by loading the error page
oops.html.

16 Chapter 5. Templates User Guide

http://www.object-craft.com.au/cgi-bin/alsamp/content1/content.py
http://www.object-craft.com.au/cgi-bin/alsamp/content1/content.py/main.html
http://www.object-craft.com.au/cgi-bin/alsamp/content1/content.py/other.html
http://www.object-craft.com.au/cgi-bin/alsamp/content1/content.py/error.html
http://www.object-craft.com.au/cgi-bin/alsamp/content1/content.py/oops.html

Albatross Documentation, Release 1.40

The error page displays a message which explains that the requested page (saved in the page variable) does not
exist.

ctx = SimpleContext ('templ’)
ctx.locals.page = page
try:
templ = ctx.load_template (page)
except TemplateloadError:
templ = ctx.load_template (’ocops.html’)

Looking at the error page oops . html, you will see a new Albatross tag <al—-1if>.

<al-if expr="page == ’'oops.html’ ">

You actually requested the error page!
<al-else>

Sorry, the page <al-value expr="page">
does not exist.
</al-if>

The <al-1if> tag allows you to conditionally include or exclude template content by testing the result of an
expression. Remember that we placed the name of the requested page into the page variable, so we are able to
display different content when the browser actually requests cops.html.

Finally, the remainder of the program displays the selected HTML page.

templ.to_html (ctx)

print ’'Content-Type: text/html’
print
ctx.flush_content ()

5.5 Albatross Macros

In the previous section we demonstrated a program which can be used to display pages from a collection of
template files. You might recall that the HTML in the template files was very repetitive. In this section you will
see how Albatross macros can be used to introduce a common look to all HTML pages.

If we look at the main.html template file again you will notice that there really is very little content which is
unique to this page.

<html>
<head>
<title>Simple Content Management — main page.</title>
</head>
<body>
<hl>Simple Content Management - main page</hl>
<hr noshade>
This is the main page.
</body>
</html>

Using Albatross macros we can place all of the boilerplate into a macro. Once defined, the macro can be reused
in all template files.

The sample program from this section is supplied in the samples/templates/content2 directory and can

be installed in your web server cgi-bin directory by running the following commands.

cd samples/templates/content?2
python install.py

5.5. Albatross Macros 17

Albatross Documentation, Release 1.40

First consider the macro in the macros.html template file.

<al-macro name="doc">

<html>

<head>
<title>Simple Content Management - <al-usearg name="title"></title>
</head>

<body>
<hl>Simple Content Management - <al-usearg name="title"></hl>
<hr noshade>
<al-usearg>

</body>

</html>

</al-macro>

Now we can change main.html to use the macro.

<al-expand name="doc">
<al-setarg name="title">main page</al-setarg>
This is the main page.

</al-expand>

Likewise, the other .html file.

<al-expand name="doc">
<al-setarg name="title">other page</al-setarg>
This is the other page.

</al-expand>

And finally the error page ocopsl.html.

<al-expand name="doc">
<al-setarg name="title">error page</al-setarg>
<al-if expr="page == ’oops.html’">
You actually requested the error page!
<al-else>
Sorry, the page <al-value expr="page">
does not exist.
</al-if>
</al-expand>

We also have to modify the application to load the macro definition before loading the requested pages.

#!/usr/bin/python
import os
from albatross import SimpleContext, TemplateloadError

script_name = os.environ[’ SCRIPT_NAME’]

request_uri = os.environ[’REQUEST_URI’]

page = request_uri[len(script_name) + 1:]

if not page or os.path.dirname (page) :
page = '‘main.html’

ctx = SimpleContext (' templ’)
ctx.load_template('macros.html’) .to_html (ctx)
ctx.locals.page = page
try:

templ = ctx.load_template (page)
except TemplatelLoadError:

templ = ctx.load_template ('’ ocops.html’”)

templ.to_html (ctx)

18 Chapter 5. Templates User Guide

Albatross Documentation, Release 1.40

print ’‘Content-Type: text/html’
print
ctx.flush_content ()

Test the program by trying a few requests with your browser:
* http://www.object-craft.com.au/cgi-bin/alsamp/content2/content.py
* http://www.object-craft.com.au/cgi-bin/alsamp/content2/content.py/main.html
* http://www.object-craft.com.au/cgi-bin/alsamp/content2/content.py/other.html
* http://www.object-craft.com.au/cgi-bin/alsamp/content2/content.py/error.html
* http://www.object-craft.com.au/cgi-bin/alsamp/content2/content.py/oops.html

The only new line in this program is the following:
ctx.load_template ('macros.html’) .to_html (ctx)

This loads the file which contains the macro definition and then executes it. Executing the macro definition
registers the macro with the execution context, it does not produce any output. This means that once defined the
macro is available to all templates interpreted by the execution context. The template is not needed once the macro
has been registered so we can discard the template file.

When you use Albatross application objects the macro definition is registered in the application object so can be
defined once and then used with all execution contexts.

There is one small problem with the program. What happens if the browser requests macros.html? Suffice to
say, you do not get much useful output. The way to handle this problem is to modify the program to treat requests
for macros.html as an error.

Let’s revisit the macro definition in macros.html and see how it works. Albatross macros use four tags;
<al-macro>, <al-usearg>, <al-expand>, and <al-setarg>.

<al-macro name="doc">
<html>
<head>
<title>Simple Content Management - <al-usearg name="title"></title>
</head>
<body>
<hl>Simple Content Management - <al-usearg name="title"></hl>
<hr noshade>
<al-usearg>
</body>
</html>
</al-macro>

The <al-macro> tag is used to define a named macro. The name attribute uniquely identifies the macro within
the execution context. In our template file we have defined a macro called "doc". All content enclosed in the
<al-macro> tag will be substituted when the macro is expanded via the <al-expand> tag.

In all but the most simple macros you will want to pass some arguments to the macro. The place where the
arguments will be expanded is controlled via the <al-usearg> tag in the macro definition. All macros ac-
cept an “unnamed” argument which captures all of the content within the <al-expand> tag not enclosed by
<al-setarg> tags. The unnamed argument is retrieved within the macro definition by using <al-usearg>
without specifying a name attribute.

In our example we used a fairly complex macro. If you are still a bit confused the following sections should
hopefully clear up that confusion.

5.5. Albatross Macros 19

http://www.object-craft.com.au/cgi-bin/alsamp/content2/content.py
http://www.object-craft.com.au/cgi-bin/alsamp/content2/content.py/main.html
http://www.object-craft.com.au/cgi-bin/alsamp/content2/content.py/other.html
http://www.object-craft.com.au/cgi-bin/alsamp/content2/content.py/error.html
http://www.object-craft.com.au/cgi-bin/alsamp/content2/content.py/oops.html

Albatross Documentation, Release 1.40

5.5.1 Zero Argument Macros

The most simple macro is a macro which does not accept any arguments. You might define the location of the
company logo within a zero argument macro.

<al-macro name="small-logo">

</al-macro>

Then whenever you need to display the logo all you need to do is expand the macro.
<al-expand name="small-logo"/>

This allows you to define the location and name of your company logo in one place.

5.5.2 Single Argument Macros
The single argument macro is almost as simple as the zero argument macro. You should always use the unnamed
argument to pass content to a single argument macro.

If you look at news sites such as http://slashdot.org/ you will note that they make heavy use of HTML tricks to
improve the presentation of their pages. Single argument macros can be extremely useful in simplifying your
template files by moving the complicated HTML tricks into a separate macro definition file.

Let’s look at the top story at http://slashdot.org/ to illustrate the point. The title bar for the story is constructed
with the following HTML (reformatted so it will fit on the page).

<table width="100%" cellpadding=0 cellspacing=0 border=0>

<tr>
<td valign=top bgcolor="#006666">

Another Nasty Outlook Virus Strikes

</td>

</tr>

</table>

As you can see, most of the HTML is dedicated to achieving a certain effect. If you were using Albatross to
construct the same HTML you would probably create a macro called story-title like this:

<al-macro name="story-title">
<table width="100%" cellpadding=0 cellspacing=0 border=0>

<tr>
<td valign=top bgcolor="#006666">

<al-usearg>

</td>

</tr>

</table>

</al-macro>

Then you could generate the story title HTML like this:
<al-expand name="story-title">Another Nasty Outlook Virus Strikes</al-expand>

Since stories are likely to be generated from some sort of database it is more likely that you would use something
like this:

20 Chapter 5. Templates User Guide

http://slashdot.org/
http://slashdot.org/

Albatross Documentation, Release 1.40

<al-expand name="story-title"><al-value expr="story.title"></al-expand>

5.5.3 Multiple Argument Macros

Multiple argument macros are effectively the same as single argument macros that accept additional named argu-
ments.

The following example shows a macro that defines multiple arguments and some template to expand the macro.

<al-macro name="multi-arg">

argl is "<al-usearg name="argl">" and
arg2 is "<al-usearg name="arg2">" and
the default argument is "<al-usearg>".
</al-macro>

<al-expand name="multi-arg">

This is <al-setarg name="arg2">arg2 content</al-setarg>
the <al-setarg name="argl">argl content</al-setarg>
default argument</al-expand>

When the above template is executed the following output is produced.

argl is "argl content" and
arg2 is "arg2 content" and
the default argument is "This is the default argument".

5.5.4 Nesting Macros

Let’s revisit the http://slashdot.org/ HTML for a story and see how to use macros to assist in formatting the entire
story summary.

Consider the rest of the story summary minus the header (reformatted to fit on the page):

<img SRC="http://images.slashdot.org/topics/topicms.gif" WIDTH="75" HEIGHT="55"
BORDER="0" ALIGN="RIGHT" HSPACE="20" VSPACE="10" ALT="Microsoft">

Posted by timothy
on Sunday July 22, @11:32PM

from the hide-the-children-get-the—gun dept.

Goldberg’s Pants writes: <i>
"ZDNet</.
and Wired
are both reporting on a new virus that spreads via Outlook. Nothing
particularly original there, except this virus is pretty unique both
in how it operates, and what it does, such as emailing random
documents from your harddrive to people in your address book, and
hiding itself in the recycle bin which is rarely checked by virus
scanners."</i> I talked by phone with a user whose machine seemed
determined to send me many megabytes of this virus 206k at a time; he
was surprised to find that his machine was infected, as most people
probably would be. The anti-virus makers have patches, if you are
running an operating system which needs them.

The first task is to simplify is the topic specific image. There are a finite number of topics, and the set of topics
does not change much over time. We could make effective use of the Albatross <al-lookup> tag to simplify
this (<al-1lookup> is discussed in section Lookup Tables):

5.5. Albatross Macros 21

http://slashdot.org/

Albatross Documentation, Release 1.40

<al-lookup name="story-topic">
<al-item expr="'microsoft’">

<img SRC="http://images.slashdot.org/topics/topicms.gif" WIDTH="75"
HEIGHT="55" BORDER="0" ALIGN="RIGHT" HSPACE="20" VSPACE="10"
ALT="Microsoft">

</al-item>
<al-item expr="'news’">

</al-item>
</al-lookup>

Then to display the HTML for the story topic all we would need to do is the following:
<al-value expr="story.topic" lookup="story-topic">
Next we will simplify the acknowledgement segment:

Posted by <al-value expr="story.poster" noescape>
on <al-value expr="story.date" date="%A %B %d, @%I:%M%p">

from the <al-value expr="story.dept"> dept.

Finally we can bring all of these fragments together like this:

<al-macro name="story-summary">

<al-expand name="story-title"><al-value name="story.title"></al-expand>
<al-value expr="story.topic" lookup="story-topic">

Posted by <al-value expr="story.poster">

on <al-value expr="story.date" date="%A %B %d, @%I:%M%p">

from the <al-value expr="story.dept"> dept.

<al-value expr="story.summary" noescape>

</al-macro>

Having defined the macro for formatting a story summary we can format a list of story summaries like this:

<al-for iter="i" expr="summary_list">
<al-exec expr="story = i.value()">
<al-expand name="story-summary"/>
</al-for>

Notice that all of the macros are referring directly to the story object which contains all of the data which
pertains to one story.

If you find that your macros are referring to application data by name then you should consider using a function
instead. Once functions have been implemented you might be able to use them as well as consider them.

5.6 Lookup Tables

The example macro used in the previous section introduced a new Albatross tag called <al-lookup>. In this
section we will look at the tag in more detail.

The <al-lookup> tag provides a mechanism for translating internal program values into HTML for display.
This is another way which Albatross allows you to avoid placing presentation logic in your application.

In a hypothetical bug tracking system we have developed we need to display information about bugs recorded in
the system. The severity of a bug is defined by a collection of symbols defined in the bt svalues module.

22 Chapter 5. Templates User Guide

Albatross Documentation, Release 1.40

TRIVIAL = 0
MINCR = 1
NORMAL = 2
MAJOR = 3

CRITICAL = 4

While the integer severity levels are OK for use as internal program values they are not very useful as displayed
values. The obvious way to display a bug severity would be via the <al-value> tag.

Severity: <al-value expr="bug.severity">
Unfortunately, this would yield results like this:
Severity: 1

By using the 1ookup attribute of the <al-value> tag we are able to use the internal value as an index into a
lookup table. The corresponding entry from the lookup table is displayed instead of the index.

The following is a table which translates the internal program value into HTML for display.

<al-lookup name="bug-severity">

<al-item expr="btsvalues.TRIVIAL">Trivial</al-item>
<al-item expr="btsvalues.MINOR">Minor</al-item>

<al-item expr="btsvalues.NORMAL">Normal</al-item>

<al-item expr="btsvalues.MAJOR">Major</al-item>

<al-item expr="btsvalues.CRITICAL">Critical</al-item>
</al-lookup>

The btsvalues module must be visible when the <al-lookup> tag is executed. You can place the
btsvalues module in the the global namespace of the execution context by importing the bt svalues mod-
ule in the same module which creates the SimpleContext execution context. When using other Albatross
execution contexts you would need to import bt svalues in the module which called run_template () or
run_template_once () toexecute the <al-lookup> tag.

We invoke the lookup table by using the 1 ookup attribute of the <al-value> tag.
Severity: <al-value expr="bug.severity" lookup="bug-severity">

Note that the bt svalues module does not need to be in the namespace at this point. The expr attributes in the
<a-item> tags are evaluated once when the <al-1lookup> tag is executed.

The <al-lookup> tag has the same runtime properties as the <al-macro> tag. You have execute the tag to
register the lookup table with the execution context. Once the lookup table has been registered it is available to all
template files executed in the same execution context.

When using Albatross application objects the lookup table is registered in the application object so can be defined
once and then used with all execution contexts.

Each entry in the lookup table is enclosed in a <al-item> tag. The expr attribute of the <al-item> tag
defines the expression which will be evaluated to determine the item’s table index. As explained above, the
expression is evaluated when the lookup table is executed, not when the table is loaded, or looked up (with the
rare exception of a lookup being used earlier in the same template file that it is defined).

It is important to note that the content enclosed by the <al—-item> tag is executed when the item is retrieved
via an <al-value> tag. This allows you to place Albatross tags inside the lookup table that are designed to be
evaluated when the table is accessed.

Finally, any content not enclosed by an <al-item> tag will be returned as the result of a failed table lookup.

5.6. Lookup Tables 23

Albatross Documentation, Release 1.40

5.7 White Space Removal in Albatross

If you were paying close attention to the results of expanding the macros we created in section Albatross Macros
you would have noticed that nearly all evidence of the Albatross tags has disappeared. It is quite obvious that the
Albatross tags are no longer present. A little less obvious is removal of whitespace following the Albatross tags.

Let’s have a look at the "doc" macro again.

<al-macro name="doc">
<html>
<head>
<title>Simple Content Management - <al-usearg name="title"></title>
</head>
<body>
<hl>Simple Content Management - <al-usearg name="title"></hl>
<hr noshade>
<al-usearg>
</body>
</html>
</al-macro>

We can get a capture the result of expanding the macro by firing up the Python interpreter to manually exercise
the macro.

>>> import albatross
>>> text = ’’’<al-macro name="doc">
<html>
<head>
<title>Simple Content Management - <al-usearg name="title"></title>
</head>
<body>
<hl>Simple Content Management - <al-usearg name="title"></hl>
<hr noshade>
<al-usearg>
</body>
</html>
</al-macro>

rrr

>>> ctx = albatross.SimpleContext (’.”)

>>> templ = albatross.Template(ctx, ’<magic>’, text)
>>> templ.to_html (ctx)
>>> text = '’’<al-expand name="doc">

<al-setarg name="title">hello</al-setarg>
</al-expand>
rrrs
>>> expand = albatross.Template (ctx, ’<magic>’, text)
>>> ctx.push_content_trap()
>>> expand.to_html (ctx)
>>> result = ctx.pop_content_trap /()
>>> print result
<html>
<head>
<title>Simple Content Management - hello</title>
</head>
<body>
<hl>Simple Content Management — hello</hl>
<hr noshade>
</body>
</html>

Not only have the <al-macro> and <al-expand> tags been removed, the whitespace that follows those tags
has also been removed. By default Albatross removes all whitespace following an Albatross tag that begins with

24 Chapter 5. Templates User Guide

Albatross Documentation, Release 1.40

a newline. This behaviour should be familiar to anyone who has used PHP.

Looking further into the result you will note that the </body> tag is aligned with the <hr noshade> tag
above it. This is the result of performing the <al-usearg> substitution (which had no content) and removing
all whitespace following the <al-usearg> tag.

This whitespace removal nearly always produces the desired result, though it can be a real problem at times.

>>> import albatross
>>> ctx = albatross.SimpleContext (’.”)

>>> ctx.locals.title = "Mr.’

>>> ctx.locals.fname = 'Harry’

>>> ctx.locals.lname = 'Tuttle’

>>> templ = albatross.Template (ctx, ’'<magic>’, ’'’'’'<al-value expr="title">

<al-value expr="fname">
<al-value expr="lname">
)
>>> ctx.push_content_trap ()
>>> templ.to_html (ctx)
>>> ctx.pop_content_trap()
"Mr.HarryTuttle’

The whitespace removal has definitely produced an undesirable result.

You can always get around the problem by joining all of the <al-value> tags together on a single line. Remem-
ber that the whitespace removal only kicks in if the whitespace begins with a newline character. For our example
this would be a reasonable solution.

>>> import albatross

>>> ctx = albatross.SimpleContext (’.”)

>>> ctx.locals.title = "Mr.’

>>> ctx.locals.fname "Harry’

>>> ctx.locals.lname = ’"Tuttle’

>>> templ = albatross.Template (ctx, ’'<magic>’, ’'’'’'<al-value expr="title"> <al-value expr="fne
>>> ctx.push_content_trap()

>>> templ.to_html (ctx)

>>> ctx.pop_content_trap/()

"Mr. Harry Tuttle’

The other way to defeat the whitespace removal while keeping each <al-value> tag on a separate line would
be to place a single trailing space at the end of each line. This would be a very bad idea because the next person
to modify the file might remove the space without realising how important it was.

Note that there are trailing spaces at the end of each line in the text assignment. This should give you a clue
about how bad this technique is.

>>> import albatross

>>> ctx = albatross.SimpleContext (’.”)

>>> ctx.locals.title = "Mr.’

>>> ctx.locals.fname "Harry’

>>> ctx.locals.lname = ’"Tuttle’

>>> templ = albatross.Template (ctx, ’'<magic>’, ’'’'’'<al-value expr="title">
<al-value expr="fname">

<al-value expr="lname">
ST
>>> ctx.push_content_trap()
>>> templ.to_html (ctx)
>>> ctx.pop_content_trap()
"Mr. \nHarry \nTuttle’

A much better way to solve the problem is to explicitly tell the Albatross parser that you want it to do something
different with the whitespace that follows the first two <al-value> tags.

5.7. White Space Removal in Albatross 25

Albatross Documentation, Release 1.40

>>> import albatross
>>> ctx = albatross.SimpleContext (’.”)

>>> ctx.locals.title = "Mr.’

>>> ctx.locals.fname = ’'Harry’

>>> ctx.locals.lname = 'Tuttle’

>>> templ = albatross.Template (ctx, ’'<magic>’, ’'’’'<al-value expr="title" whitespace="indent">

<al-value expr="fname" whitespace="indent">
<al-value expr="lname">
)

>>> ctx.push_content_trap()

>>> templ.to_html (ctx)

>>> ctx.pop_content_trap()

"Mr. Harry Tuttle’

The above variation has told the Albatross interpreter to only strip the trailing newline, leaving intact the indent
on the following line. The following table describes all of possible values for the whitespace attribute.

Value Meaning

rall’ Keep all following whitespace.

"strip’ Remove all whitespace - this is the default.
"indent’ Keep indent on following line.

"newline’ | Remove all whitespace and substitute a newline.

Note that when the trailing whitespace does not begin with a newline the strip’ and ' indent’ whitespace
directives are treated exactly like all’.

5.8 Using Forms to Receive User Input

Nearly all web applications need to accept user input. User input is captured by using forms. We will begin by
demonstrating the traditional approach to handling forms, then in later sections you will see how Albatross can be
used to eliminate the tedious shuffling of application values in and out of form elements.

Let’s start with a program that presents a form to the user and displays to user response to the form. The sample
program from this section is supplied in the samples/templates/forml directory and can be installed in
your web server cgi—bin directory by running the following commands.

cd samples/templates/forml
python install.py

The CGI program form. py is shown below.

#!/usr/bin/python
import cgi
from albatross import SimpleContext

ctx = SimpleContext (’.”)
ctx.locals.form = cgi.FieldStorage ()

templ = ctx.load_template(’ form.html”)
templ.to_html (ctx)

print ’‘Content-Type: text/html’
print
ctx.flush_content ()

There are no surprises here, we are using the standard Python cgi module to capture the browser request. We
want to display the contents of the request so it is placed into the execution context.

The form.html template file is used to display present a form and display the browser request.

26 Chapter 5. Templates User Guide

Albatross Documentation, Release 1.40

<html>
<head>
<title>Display Form Input</title>
</head>
<body>
Input some values to the following form and press the submit button.
<form method="post" action="form.py">
Text field: <input name="text">

Singleton checkbox: <input type="checkbox" name="singleton">

Checkbox group:
<input type="checkbox" name="group" value="checkl">
<input type="checkbox" name="group" value="check2">

Radio buttons:
<input type="radio" name="radio" value="radiol">
<input type="radio" name="radio" value="radio2">

Option menu: <select name="select"><option>optionl<option>option2<option>option3</select>

<input type="submit" value="submit">
</form>
<al-include name="form-display.html">
</body>
</html>

We have placed the form display logic in a separate template file because we wish to reuse that particularly nasty
piece of template. The form display template is contained in form-display.html.

If you do not understand how the FieldStorage class from the cgi module works, do not try to understand
the following template. Refer to section Using Albatross Input Tags which contains a small explanation of the
FieldStorage class and some Python code that performs the same task as the template.

<al-for iter="f" expr="form.keys()">
<al-exec expr="field = form[f.value()]">
<al-if expr="type (field) is type([])">

Field <al-value expr="f.value()"> is list:
<al-for iter="e" expr="field">
<al-exec expr="elem = e.value()">
<al-if expr="e.index() > 0">, </al-if>
<al-value expr="elem.value">
</al-for>
<al-else>
Field <al-value expr="f.value()"> has a single value:
<al-value expr="field.value">
</al-if>

</al-for>

You can see the program output by pointing your browser at http://www.object-craft.com.au/cgi-
bin/alsamp/form1/form.py.

You will notice that each time you submit the page it comes back with all of the fields cleared again.

Typically web applications that generate HTML dynamically will hand construct <input > tags and place appli-
cation values into the value attributes of the input tags. Since we are using Albatross templates we do not have
the ability to construct tags on the fly without doing some very nasty tricks. Fortunately Albatross supplies some
tags that we can use in place of the standard HTML <input> tags.

5.9 Using Albatross Input Tags

In the previous section we saw how web applications can capture user input from browser requests. This section
explains how Albatross <al—-input> tags can be used to take values from the execution context and format them
as value attributes in the HTML <input> tags sent to the browser.

5.9. Using Albatross Input Tags 27

http://www.object-craft.com.au/cgi-bin/alsamp/form1/form.py
http://www.object-craft.com.au/cgi-bin/alsamp/form1/form.py

Albatross Documentation, Release 1.40

The sample program from this section is supplied in the samples/templates/form2 directory and can be
installed in your web server cgi-bin directory by running the following commands.

cd samples/templates/form2
python install.py

The first change is in the form.html template file.

<html>
<head>
<title>Display Form Input</title>
</head>
<body>
Input some values to the following form and press the submit button.
<form method="post" action="form.py">
Text field: <al-input name="text'">

Singleton checkbox: <al-input type="checkbox" name="singleton">

Checkbox group:
<al-input type="checkbox" name="group" value="checkl">
<al-input type="checkbox" name="group" value="check2">

Radio buttons:
<al-input type="radio" name="radio" value="radiol">
<al-input type="radio" name="radio" value="radio2">

Option menu:
<al-select name="select">
<al-option>optionl</al-option>
<al-option>option2</al-option>
<al-option>option3</al-option>
</al-select>
<al-input type="submit" name="submit" value="Submit">
</form>
<al-include name="form-display.html">
</body>
</html>

We need to place some values into the execution context so that the Albatross <al-input> tags can display
them. The easiest thing to do is to place the browser submitted values into the execution context.

The documentation for the Python cgi module is quite good so I will not try to explain the complete behaviour
of the FieldStorage class. The only behaviour that we need to be aware of for our program is what it does
when it receives more than one value for the same field name.

The FieldStorage object that captures browser requests behaves like a dictionary that is indexed by field
name. When the browser sends a single value for a field, the dictionary lookup yields an object containing the
field value in the value member. When the browser sends more than one value for a field, the dictionary lookup
returns a list of the objects used to represent a single field value.

Using this knowledge, the form.py program can be modified to merge the browser request into the execution
context.

#!/usr/bin/python
import cgi
from albatross import SimpleContext

form = cgi.FieldStorage ()
ctx = SimpleContext (’.”)
ctx.locals.form = form
for name in form.keys():
if type(form[name]) is type([]):
value = []
for elem in form[name]:
value.append(elem.value)
else:

28 Chapter 5. Templates User Guide

Albatross Documentation, Release 1.40

value = form[name] .value
setattr(ctx.locals, name, value)
templ = ctx.load_template ('’ form.html’”)
templ.to_html (ctx)

print ’‘Content-Type: text/html’
print
ctx.flush_content ()

You can see the program output by pointing your browser at http://www.object-craft.com.au/cgi-
bin/alsamp/form2/form.py.

You will notice that your input is sent back to you as the default value of each form element.

When you use Albatross application objects the browser request is automatically merged into the execution context
for you.

5.10 More on the <al-select> Tag

In the previous section we performed a direct translation of the standard HTML input tags to the equivalent
Albatross tags. In addition to a direct translation from the HTML form, the <al-select> tag supports a
dynamic form.

In all but the most simple web application you will occasionally need to define the options in a <select> tag
from internal application values. In some ways the dynamic form of the <al-select> tag is easier to use than
the static form.

The sample program from this section is supplied in the samples/templates/form3 directory and can be
installed in your web server cgi-bin directory by running the following commands.

cd samples/templates/form3
python install.py

The form from section Using Albatross Input Tags has been modified to include two <al-select> tags, and as
shown below.

<html>
<head>
<title>Display Form Input</title>
</head>
<body>
Input some values to the following form and press the submit button.
<form method="post" action="form.py">
Text field: <al-input name="text">

Singleton checkbox: <al-input type="checkbox" name="singleton">

Checkbox group:
<al-input type="checkbox" name="group" value="checkl">
<al-input type="checkbox" name="group" value="check2">

Radio buttons:
<al-input type="radio" name="radio" value="radiol">
<al-input type="radio" name="radio" value="radio2">

Option menu:
<al-select name="selectl" optionexpr="option_listl"/>
<al-select name="select2" optionexpr="option_list2"/>
<al-input type="submit" name="submit" value="Submit">
</form>
<al-include name="form-display.html">
</body>
</html>

5.10. More on the <al-select> Tag 29

http://www.object-craft.com.au/cgi-bin/alsamp/form2/form.py
http://www.object-craft.com.au/cgi-bin/alsamp/form2/form.py

Albatross Documentation, Release 1.40

The <al-select> tags demonstrate the two ways that you can define option lists in your code using the
optionexpr attribute. When converting the tag to HTML the expression in the optionexpr attribute is
evaluated and the result is used to generate the option list that appears in the generated HTML.

The <form.py> program has been modified to supply lists of option values.
#!/usr/bin/python

import cgi
from albatross import SimpleContext

form = cgi.FieldStorage ()
ctx = SimpleContext (’.”)

ctx.locals.option_listl = [’optionl’, ’'option2’, ’‘option3’]
ctx.locals.option_list2 [(1, 'optionl’), (2, "option2’), (3, ’"option3’)]

ctx.locals.form = form
for name in form.keys():
if type(form[name]) is type([]):
value = []
for elem in form[name]:
value.append(elem.value)
else:
value = form[name] .value
setattr(ctx.locals, name, value)
templ = ctx.load_template(’ form.html”)
templ.to_html (ctx)

print ’‘Content-Type: text/html’
print
ctx.flush_content ()

You can see the program output by pointing your browser at http://www.object-craft.com.au/cgi-
bin/alsamp/form3/form.py.

If you view the browser source produced by the two <al-select> tags you will see the difference between
the way that both option list forms are handled. Note in particular that the tuples in option_11ist2 contain
an integer value as the first element. This is converted to string when it is compared with the value stored in
select2 to determine which option is selected.

The browser request sent to the application will always contain strings for field values.

5.11 Streaming Application Output to the Browser

By default Albatross buffers all HTML generated from templates inside the execution context and sends a com-
plete page once the template execution has completed (via the f1ush_content () method). The advantage of
buffering the HTML is that applications can handle exceptions that occur during execution of the template and
prevent any partial results leaking to the browser.

Sometimes your application needs to perform operations which take a long time. Buffering all output while
lengthy processing occurs makes the application look bad. Albatross lets you use the <al-flush> tag to mark
locations in your template file where any accumulated HTML should be flushed to the browser. The only downside
to using this tag is that you lose the ability to completely insulate the user from a failure in template execution.

The sample program from this section is supplied in the samples/templates/stream directory and can be
installed in your web server cgi-bin directory by running the following commands.

cd samples/templates/stream
python install.py

The st ream. py program is shown below.

30 Chapter 5. Templates User Guide

http://www.object-craft.com.au/cgi-bin/alsamp/form3/form.py
http://www.object-craft.com.au/cgi-bin/alsamp/form3/form.py

Albatross Documentation, Release 1.40

#!/usr/bin/python
import time
from albatross import SimpleContext

class SlowProcess:
def _ _getitem__ (self, 1i):
time.sleep(l)
if i < 10:
return i
raise IndexError

ctx = SimpleContext (’.”)
templ = ctx.load_template(’stream.html’)
ctx.locals.process = SlowProcess ()

print ’‘Content-Type: text/html’
print

templ.to_html (ctx)
ctx.flush_content ()

We have simulated a slow process by building a class that acts like a sequence of 10 elements that each take one
second to retrieve.

We must make sure that we send the HTTP headers before calling the template execution (to_html () method).
This is necessary since the execution of the template is going to cause HTML to be sent to the browser.

Now let’s look at the st ream.html template file that displays the results of our slow process.

<html>
<head><title>I think I can, I think I can</title></head>
<body>
<p>Calculation is in progress, please stand by.
<p>
<al-for iter="n" expr="process">
<al-flush>
Stage: <al-value expr="n.value () ">

</al-for>

<p>All done!
</body>
</html>

You can see the program output by pointing your browser at http://www.object-craft.com.au/cgi-
bin/alsamp/stream/stream.py.

5.12 Displaying Tree Structured Data

One of the more powerful tags in the Albatross toolkit is the <al-tree> tag. This tag can be used to display
almost any data that is tree structured.

The best way to explain the tag is by example. Consider the samples/templates/tree/tree.py sample
program. This is a standalone program that is intended to be run from the command line.

from albatross import SimpleContext

class Node:

def _ init_ (self, name, children = None):
self.name = name
if children is not None:

5.12. Displaying Tree Structured Data 31

http://www.object-craft.com.au/cgi-bin/alsamp/stream/stream.py
http://www.object-craft.com.au/cgi-bin/alsamp/stream/stream.py

Albatross Documentation, Release 1.40

self.children = children

ctx = SimpleContext (' .”)
ctx.locals.tree = Node(’'a’, [Node('b’, [Node('c’),
Node ("d") 1),
Node ("e’, [Node(’f’, [Node(’g’, [Node('h’),
Node ("1")1)1),
Node (" j"),
Node ("k’, [Node('17),
m

templ = ctx.load_template (’'tree.html’)
templ.to_html (ctx)
ctx.flush_content ()

The program constructs a tree of Node objects then passes the root of the tree to the tree.html template for
formatting. The samples/templates/tree/tree.html template file looks like this:

<al-lookup name="indent">
<al-item expr="0"> </al-item>
<al-item expr="1"> |</al-item>
<al-item expr="2"> \</al-item>
</al-lookup>
<al-tree iter="n" expr="tree">
<al-for iter="c" expr="range (n.depth())">
<al-value expr="n.line(c.value())" lookup="indent">
</al-for>
—<al-value expr="n.value () .name" whitespace="newline">
</al-tree>

When you run the program it produces the following result.

—a
|-b
| |-c
| \-d
\-e
|-f
| \-g
\ I-h
\ \-1
-3
\-k
| -1
\-m

Internally the <al-tree> tag uses a special iterator that is an instance of the TreeIterator class. This
iterator performs a pre-order traversal of the tree returned by the expr attribute of the tag. The only requirement
of the tree node objects is that child nodes are stored in the children sequence member.

The <al-tree> tag also supports a more powerful lazy loading mode of operation which is supported by Alba-
tross application objects. Refer to section <al-tree>.

32 Chapter 5. Templates User Guide

CHAPTER
SIX

GUIDE TO BUILDING APPLICATIONS

Roughly speaking, every page or document sent from a web server to a browser is the result of the same processing
sequence. For our purposes a document is one page in an application.

1. The browser connects to the server and requests a page.

2. The server decodes the browser request and processes it. This can cause all manner of subsidiary application
processing to occur.

3. The server sends the result of processing back to the browser as the next page in the application.

The essentially stateless nature of the web presents problems for the application developer who wishes to retain
state between different pages in their application. From the point of view of the user, the state of the application
at the server is represented by the page that they see in their browser window(s). When they enter values and
press submit buttons on their page they (quite reasonably) expect the application on the web server to process their
request and return the next page in the application.

The point of view of the web application developer is very different. At the server side the application must be able
to receive a request from one browser, process it and send the next application page back to that browser. Before
seeing the next request from the same browser, another browser may request a different page from the application.
The web application even has to deal with multiple browsers simultaneously accessing different pages in the
application. All of this while maintaining the illusion for the end user that they are running their own copy of the
application.

Even when you only have a single machine running Apache, there are multiple Apache processes on that machine
that are receiving and processing browser requests. This means that there is no guarantee that the same process
that received the last request from a particular browser will receive the next request from that browser. If your
application requires some state to be retained between pages, there has to be a way for that state to migrate between
different Apache processes. If you are using more than one machine to process requests, then you need some way
for the application state to move between machines.

There are essentially three approaches to solving the state propagation problem.

1. Deploy a stateless application. Only the most trivial applications do not require state to be retained across
browser requests.

2. Get the browser to store the application state. This can be done by embedding information in URL’s and
hidden fields in forms. When the browser requests the next page the application restores state by extracting
it from the hidden field values sent back by the browser. Browser cookies can also be used to store some
types of application state.

3. Get the browser to store a session identifier in either URL’s, hidden fields, or a cookie. When the browser
requests the next page the application uses the browser supplied session identifier to locate the state in a
server-side session database of some description.

Assuming that your application is non-trivial, the second approach (state held by the browser) is the easiest to
implement.

If you are building a financial application, you will probably feel more comfortable with the third approach. This
has the advantage of hiding implementation details of your application from prying eyes.

All three approaches are supported (in one way or another) by Albatross.

33

Albatross Documentation, Release 1.40

In all Albatross applications there are two important objects that determine how browser requests are processed;
the application object, and the execution context object. The application is a potentially long lived object that
provides generic services for multiple browser requests. A new execution context is created to process each
browser request.

One of the things that the application and execution context do is cooperate to provide session functionality.
The execution context is the object where session data is created and manipulated, but the application is usually
responsible to loading and saving the session. This allows the application to maintain a long lived connection with
a server if necessary.

6.1 Albatross Application Model

In the Albatross world view explained in the previous section, all web applications follow the same processing
sequence to handle browser requests. When processing a browser request to generate a response the processing
(in most cases) flows according to figure Request Processing Dataflow.

Browser

I request response

@ req
N |
I ®J content ‘

t lat N t
I emplate og N ctx ‘
©

Figure 6.1: Request Processing Dataflow

The processing steps are:
1. Capture the browser request in a Request object.
Pass the Request object to the run () method of the application object.
Application locates the Python code for processing the browser request.
Page processing code runs one or more Albatross templates.
Templates contain either standard Albatross tags or application defined extension tags.
As tags are converted to HTML a stream of content fragments is sent to the execution context.

When the execution context content is flushed all of the fragments are joined together.

® N oA »d

Joined flushed content is sent to the Request object write_content () method.
9. Application response is returned to the browser.

In the Albatross code the processing is driven by the run () method of the Application class in the app
module.

It is instructive to look at the exact code from Albatross that implements the processing sequence.

34 Chapter 6. Guide to Building Applications

Albatross Documentation, Release 1.40

ctx = self.create_context ()
ctx.set_request (req)
self.load_session (ctx)
self.load_page (ctx)
if self.validate_request (ctx):
self.merge_request (ctx)
self.process_request (ctx)
self.display_response (ctx)
self.save_session (ctx)
ctx.flush_content ()

The code is contained within a t ry/except block to allow the application to trap and handle exceptions.

The Application class assumes very little about the implementation of each of these steps. The detail of the
processing stages is defined by a collection of mixin classes. A combination of the Application class and a
selection of the mixin classes is used to construct your application class and execution context classes. There are a
number of prefabricated applications and execution contexts, see chapter Prepackaged Application and Execution
Context Classes.

This mix and match approach to building the application and execution context classes provides a great deal of
flexibility. Albatross is an application toolkit, not a deployment platform. You are encouraged to look at the code
and develop your own mixin classes to suit your deployment requirements. One of the primary goals of Albatross
is to keep the toolkit line count low. This reduces the amount of time you need to spend before you can make your
own custom extensions to the toolkit.

In the previous chapter we talked about the importance of separating the presentation layer of the application from
the implementation as shown in figure Separation of Presentation/Implementation. Albatross HTML templates
provide a fairly powerful tool for achieving that separation.

template
template
template
Presentation
Implementation
object object object

Figure 6.2: Separation of Presentation/Implementation

The presentation layer consists of a collection of template files that contain the logic required to display data from
the objects contained in the implementation layer. In Albatross, the line between the two layers is the execution
context.

To make objects available to the presentation layer the application places references to those objects into the local
or global namespace of the execution context. The local namespace is populated in application code like this:

ctx.locals.mbox = Mbox (ctx.locals.username, ctx.locals.passwd)
ctx.locals.msg = ctx.locals.mbox[int (ctx.locals.msgnum) - 1]

To execute Python expressions inside the template files, the execution context uses the following Python code
from the NamespaceMixin class:

def eval_expr(self, expr):
self.locals.__ctx__ = self
try:
return eval (expr, self._ _globals, self.locals.__dict__)

6.1. Albatross Application Model 35

Albatross Documentation, Release 1.40

finally:
del self.locals._ ctx_

Whenever application code calls the run_template () or run_template_once () methods of the
NamespaceMixin class Albatross sets the global namespace (via set_globals ()) for expression
evaluation (in self.__globals) to the globals of the function that called run_template () or
run_template_once().

Not many applications are output only, most accept browser input. The Albatross application object merges the
browser request into the execution context in the merge_request () method. Referring back to the application
processing sequence also note that the application object displays the result of processing the browser request via
the execution context.

With this in mind figure Separation of Presentation/Implementation becomes figure Presentation/Implementation
and Execution Context.

template

template

template

browser

request \APresematioﬂ
execution context
\ app

Implementation response

object object object

Figure 6.3: Presentation/Implementation and Execution Context

The only thing missing is the application glue that processes the browser requests, places application objects into
the execution context, and directs the execution of template files.

The application model built into Albatross is intended to facilitate the use of a model-view-controller like approach
(see figure Albatross model-view-controller) to constructing your application. There are many excellent descrip-
tions of the model-view-controller design pattern which can be found by searching for “model view controller” on
http://www.google.com/.

<_> view Q_D control | er

user

nodel

Figure 6.4: Albatross model-view-controller

The user invokes application functions via the controller through the view. The controller contains logic to direct
the application functionality contained within the model. All of the real application functionality is in the model,
not the controller. Changes to the application model are then propagated to the view via the controller.

In Albatross terms, the implementation layer is the model and the presentation layer is the view. The application
glue plays the role of the controller. By divorcing all application logic from the view and controller you are able
to construct unit test suites for your application functionality using the Python unittest module.

36 Chapter 6. Guide to Building Applications

http://www.google.com/

Albatross Documentation, Release 1.40

Albatross uses an approach inspired by the traditional model-view-controller design pattern. So now we can
draw the final version of the diagram which shows how Albatross applications process browser requests in figure
Albatross Application Model.

template

template

template

browser I

request \

\A execution context
app
application /\ \A

response

object object object

Figure 6.5: Albatross Application Model

As you can see the execution context is central to all of the Albatross processing. It is worth revisiting the
application processing sequence set out in Albatross Application Model at the start of this section to see how the
application draws all of the elements together.

During step four (page processing) the Albatross application object will call on your application code to process
the browser request.

There are a number of different ways in that your application code can be “attached” to the Albatross application
object. The PageObjectMixin application mixin class requires that you implement application functionality
in “page objects” and define methods that can be called by the toolkit. As an example, here is the page object for
the " login’ page of the popview sample application.

class LoginPage:
name = ’login’

def page_process(self, ctx):
if ctx.reg_equals(’login’):
if ctx.locals.username and ctx.locals.passwd:

try:
ctx.open_mbox ()
ctx.add_session_vars (’username’, ’'passwd’)

except poplib.error_proto:
return

ctx.set_page(’list’)

def page_display(self, ctx):
ctx.run_template ('’ login.html’)

When the toolkit needs to process the browser request it calls the page_process () method of the current
page object. As you can see, the code determines which request was made by the browser, instantiates the ap-
plication objects required to service the browser request, then directs the context to move to a new page via the
set_page () method.

When Albatross is ready to display the browser response it calls the page_display () method of the current
page object. In the code above, set_page () is only called if the mailbox is opened successfully. This means
that a failed login will result in the login page being displayed again.

Note that when you change pages the object that generates the HTML will be a different object to that that
processed the browser request.

6.1. Albatross Application Model 37

Albatross Documentation, Release 1.40

To let you get a foothold on the toolkit application functionality we will work through another variant of the form
application.

6.2 Using Albatross Input Tags (Again)

In the previous chapter we demonstrated the use of Albatross input tags to transfer values from the execution
context into HTML <input> tags, and from the browser request back into the execution context. In this section
we present the same process using an Albatross application object.

The sample program from this section is supplied in the samples/form4 directory and can be installed in your
web server cgi—-bin directory by running the following commands.

cd samples/form4
python install.py

The form.html template file used by the application follows.

<html>
<head>
<title>Display Form Input</title>
</head>
<body>
Input some values to the following form and press the submit button.
<al-form method="post">
Text field: <al-input name="text">

Singleton checkbox: <al-input type="checkbox" name="singleton">

Checkbox group:
<al-input type="checkbox" name="group" list value="checkl">
<al-input type="checkbox" name="group" list value="check2">

Radio buttons:
<al-input type="radio" name="radio" value="radiol">
<al-input type="radio" name="radio" value="radio2">

Option menu:
<al-select name="select">
<al-option>optionl</al-option>
<al-option>option2</al-option>
<al-option>option3</al-option>
</al-select>
<al-input type="submit" name="submit" value="submit">
</al-form>
number of requests: <al-value expr="num">

text: <al-value expr="text">

singleton: <al-value expr="singleton">

group: <al-value expr="group">

radio: <al-value expr="radio">

select: <al-value expr="select">

</body>
</html>

The most important new features in the template file are the use of the <al—-form> tag, and the 1ist attribute
in the <al-input type="checkbox"> tag.

Most execution contexts created by application objects inherit from the NameRecorderMixin. The
NameRecorderMixin records the name, type and multiple value disposition of each input tag in a form in
a cryptographically signed hidden field named __albform__ . This mechanism prevents clients from being able
to merge arbitrary data into the local namespace, as well as providing additional information to make the merging
process more reliable. The recording process requires that all <al-input > tags be enclosed by an <al-form>
tag.

When the resulting form is submitted, the contents of the __albform__ field controls merging of form fields
into ctx.locals. Only fields tracked by __albform__ will be merged. Consequently, if submission occurs

38 Chapter 6. Guide to Building Applications

Albatross Documentation, Release 1.40

via a GET request without an __albform__ field (for example, as a result of the user following an <al-a>),
the application must explicitly request relevent fields be merged via the merge_vars (. ..) method. '

Any input field with the 1ist attribute will always receive a list value from a POST browser request regardless of
how many values (including none) were sent by the browser. An exception will be raised if you specify multiple
input tags with the same name in a form and do not include the 1ist attribute. The input tag types radio,
image, and submit can only have a single value, even if multiple inputs of the same name appear in a form,
and the 11 st attribute should not be specified on these.

The form.py program is show below.

#!/usr/bin/python
from albatross import SimpleApp
from albatross.cgiapp import Request

class Form:

def page_enter(self, ctx):
ctx.locals.text = ctx.locals.singleton = ctx.locals.group = \
ctx.locals.radio = ctx.locals.select = None
ctx.locals.num = 0
ctx.add_session_vars (' num’)

def page_display(self, ctx):
ctx.locals.num += 1
ctx.run_template (' form.html”)

app = SimpleApp (base_url=’'form.py’,
template_path=".",
start_page=’form’,
secret=’'—=-secret—=-")

app.register_page (' form’, Form())

if name == '__main__ ’:

app.run (Request ())

You can run the program by pointing your browser at http://www.object-craft.com.au/cgi-
bin/alsamp/form4/form.py.

Notice that the browser request is automatically merged into the local namespace and then extracted by the tem-
plate when generating the HTML response.

The program uses the SimpleApp application class. SimpleApp uses an object to define each page served by
the application. Each of the page objects must be registered with the application via the register_page ()
method.

When the application enters a new page SimpleApp calls the page_enter () method of the page object to
allow the application to initialise execution context values. In the above program the page_enter () method
initialises all values used by the HTML form to None, initialises the variable num to 0 and places it into the
session.

As shown in the application processing sequence in the Albatross Application Model section, the first
step in handling a browser request is to create an execution context. The SimpleApp class uses in-
stances of the SimpleAppContext class which inherits from HiddenFieldSessionMixin. The
HiddenFieldSessionMixin class stores session data in a hidden field named __albstate__ at the end
of each form.

When an Albatross application needs to display the result of processing a request it calls the page_display ()
method of the current page. In the above program this method increments num and then runs the form.html

! Prior to Albatross version 1.36, in the absence of an __albform__ field, all request fields would be merged.

6.2. Using Albatross Input Tags (Again) 39

http://www.object-craft.com.au/cgi-bin/alsamp/form4/form.py
http://www.object-craft.com.au/cgi-bin/alsamp/form4/form.py

Albatross Documentation, Release 1.40

template. It is important to note that any changes to session values after executing a template will be lost as the
session state is saved in the HTML produced by the template.

It is worth explaining again that the program does not perform any request merging — this is all done automatically
by the Albatross application and execution context objects.

6.3 The Popview Application

In this section we will develop a simple application that allows a user to log onto a POP server to view the contents
of their mailbox. Python provides the poplib module which provides a nice interface to the POP3 protocol.

The complete sample program is contained in the samples/popviewl directory. Use the install.py script
to install the sample.

cd samples/popviewl
python install.py

First of all let’s create the model components of the application. This consists of some classes to simplify access
to a user mailbox. Create a module called popviewlib.py and start with the Mbox class.

import string
import poplib

pophost = "pop’

class Mbox:

def __init__ (self, name, passwd):
self.mbox = poplib.POP3 (pophost)
self.mbox.user (name)
self.mbox.pass_ (passwd)

def __getitem__ (self, 1i):
try:
return Msg(self.mbox, i + 1)
except poplib.error_proto:
raise IndexError

The important feature of our Mbox class is that it implements the Python sequence protocol to retrieve messages.
This allows us to iterate over the mailbox using the <al-for> tag in templates. When there is an attempt to
retrieve a message number which does not exist in the mailbox, a poplib.error_proto exception will be
raised. We transform this exception into an IndexError exception to signal the end of the sequence.

The sequence protocol is just one of the truly excellent Python features which allows your application objects to
become first class citizens.

Next we need to implement a Msg class to access the header and body of each message.
class Msg:

def __init__ (self, mbox, msgnum) :
self.mbox = mbox
self.msgnum = msgnum
self.read_headers ()

def read_headers (self):
res = self.mbox.top(self.msgnum, O0)
hdrs = Headers|()
hdr = None
for line in res[1l]:

40 Chapter 6. Guide to Building Applications

Albatross Documentation, Release 1.40

if line and line[0] in string.whitespace:
hdr = hdr + "\n’ + line
else:
hdrs.append (hdr)
hdr = line
hdrs.append (hdr)
self.hdrs = hdrs
return hdrs

def read_body (self):
res = self.mbox.retr (self.msgnum)
lines = res[1]
for i in range(len(lines)):
if not lines[i]:
break
self.body = string.join(lines[i:], "\n’)
return self.body

Note that we retrieve the message headers in the constructor to ensure that the creation of the Msg object will fail
if there is no such message in the mailbox. The Mbox class uses the exception raised by the poplib module to
detect when a non-existent message is referenced.

The popl ib module returns the message headers as a flat list of text lines. It is up to the poplib user to process
those lines and impose a higher level structure upon them. The read_headers () method attaches header
continuation lines to the corresponding header line before passing each complete header to a Headers object.

The read_body () method retrieves the message body lines from the POP server and combines them into a
single string.

We are going to need to display message headers by name so our Headers class implements the dictionary
protocol.

class Headers:

def _ _init__ (self):
self.hdrs = {}

def append(self, header):
if not header:
return
parts = string.split (header, ’": ', 1)
name = string.capitalize (parts[0])
if len(parts) > 1:
value = parts[l]
else:
value = '/
curr = self.hdrs.get (name)
if not curr:
self.hdrs[name] = value
return
if type(curr) is type(’’):
curr = self.hdrs[name] = [curr]
curr.append(value)

def __getitem__ (self, name):
return self.hdrs.get (string.capitalize (name), ')

Instead of raising a KeyError for undefined headers, the __getitem__ () method returns the empty string.
This allows us to test the presence of headers in template files without being exposed to exception handling.

Lets take all of these classes for a spin in the Python interpreter.

6.3. The Popview Application 41

Albatross Documentation, Release 1.40

>>> import popviewlib

>>> mbox = popviewlib.Mbox (’djc’, ’xxx%')
>>> msg = mbox[0]

>>> msg.hdrs[’From’]

"Owen Taylor <otaylor@redhat.com>’

>>> print msg.read_body ()

Daniel Egger <egger(@suse.de> writes:

> Am 05 Aug 2001 12:00:15 -0400 schrieb Alex Larsson:
>

[snip]

Next we will create the application components (the controller) in popview.py. Albatross has a prepackaged
application object which you can use for small applications; the SimpleApp class.

In anything but the most trivial applications it is probably a good idea to draw a site map like figure Popview Site
Map to help visualise the application.

Our application will contain three pages; login, message list, and message detail.

refresh

start login
message

Em— login list

detail

list

V.

message
detail

Figure 6.6: Popview Site Map

The SimpleApp class inherits from the PageObjectMixin class which requires that the application define
an object for each page in the application.

Albatross stores the current application page identifier in the local namespace of the execution context as
__page___. The value is automatically created and placed into the session.

When the current page changes, the Albatross application object calls the page_enter () function/method
of the new page object. The page_process () method is called to process a browser request, and finally
page_display () is called to generate the application response.

The SimpleApp class creates SimpleAppContext execution context objects. By subclassing SimpleApp
and overriding create_context () we can define our own execution context class.

The prologue of the application imports the required application and execution context classes from Albatross and
the Request class from the deployment module.

#!/usr/bin/python

from albatross import SimpleApp, SimpleAppContext
from albatross.cgiapp import Request

import poplib

import popviewlib

Next in the file is the class for the login page. Note that we only implement glue (or controller) logic in the page
objects. Each time a new page is served we will need to open the mail box and retrieve the relevant data. That
means that the username and password will need to be stored in some type of session data storage.

42 Chapter 6. Guide to Building Applications

Albatross Documentation, Release 1.40

class LoginPage:
name = ’login’

def page_process(self, ctx):
if ctx.reqg_equals(’login’):
if ctx.locals.username and ctx.locals.passwd:

try:
ctx.open_mbox ()
ctx.add_session_vars (’username’, ’'passwd’)

except poplib.error_proto:
return

ctx.set_page (’'list’)

def page_display(self, ctx):
ctx.run_template (' login.html’)

The req_equals () method of the execution context looks inside the browser request for a field with the spec-
ified name. It returns a TRUE value if such a field exists and it has a value not equal to None. The test above will
detect when a user presses the submit button named ’ 1ogin’ onthe login.html page.

Next, here is the page object for displaying the list of messages in the mailbox.

class ListPage:
name = ’list’

def page_process(self, ctx):
if ctx.req_equals(’'detail’):
ctx.set_page ('detail’)

def page_display(self, ctx):
ctx.open_mbox ()
ctx.run_template(’list.html’)

The “detail” page displays the message detail.

class DetailPage:
name = ’detail’

def page_process(self, ctx):
if ctx.reg_equals(’list’):
ctx.set_page(’list’)

def page_display(self, ctx):
ctx.open_mbox ()
ctx.read_msqg ()
ctx.run_template ('detail.html’)

And finally we define the application class and instantiate the application object. Note that we have subclassed
SimpleApp to create our own application class. This allows us to implement our own application level function-
ality as required.

class AppContext (SimpleAppContext) :

def open_mbox (self):
if hasattr(self.locals, ’"mbox’):
return
self.locals.mbox = popviewlib.Mbox(self.locals.username, self.locals.passwd)

def read_msg(self):

6.3. The Popview Application 43

Albatross Documentation, Release 1.40

if hasattr(self.locals, ’'msg’):

return
self.locals.msg = self.locals.mbox[int (self.locals.msgnum) — 1]
self.locals.msg.read_body ()

class App (SimpleApp) :

def _ init_ (self):

SimpleApp._ _init__ (self,
base_url='popview.py’,
template_path=".",
start_page=’login’,
secret=’'-=-secret—-=-")

for page_class in (LoginPage, ListPage, DetailPage):

self.register_page (page_class.name, page_class|())

def create_context (self) :
return AppContext (self)

app = App ()

if name == '__main_ ’:

app.run (Request ())

The base_url argument to the application object constructor will be placed into the act i on attribute of all forms
produced by the <al-form> tag. It will also form the left hand side of all hrefs produced by the <al-a> tag.
The template_path argument is a relative path to the directory that contains the application template files. The
start_page argument is the name of the application start page. When a browser starts a new session with the
application it will be served the application start page.

We have also created our own execution context to provide some application functionality as execution context
methods.

With the model and controller components in place we can now move onto the template files that comprise the
view components of the application.

First let’s look at the 1ogin.html page.

<html>
<head>
<title>Please log in</title>
</head>
<body>
<hl>Please log in</hl>
<al-form method="post">
<table>
<tr>
<td>Username</td>
<td><al-input name="username" size="10" maxlength="10"></td>
</tr>
<tr>
<td>Password</td>
<td><al-input type="password" name="passwd" size="10" maxlength="10"></td>
<td><al-input type="submit" name="login" value="Log In"></td>
</tr>
</table>
</al-form>
</body>
</html>

44 Chapter 6. Guide to Building Applications

Albatross Documentation, Release 1.40

When you look at the HTML produced by the application you will notice two extra <input> tags have been
generated at the bottom of the form. They are displayed below (reformatted to fit on the page).

<input type="hidden" name="__albform_ " value="eJzTDJeu3P90rZC6dde04xUhHL
WE JBghHKXFqUV5ibmphUzeDKFsBYnFxeUphcxANmt OfnpmXiGLNOOpHgB7UBOp

ll>

<input type="hidden" name="__albstate_ " value="eJzT2sr5Jezh942TUrMty6qgl]j
WsLGUM54uMLEtNT4+MLmUJZc/LTM/MKmYv1AH8XEAY=

ll>

If we fire up the Python interpreter we can have a look at what these fields contain.

>>> import base64,zlib,cPickle
>>> g = "eJzTDJeu3P90rzC6dde04xUhHL\n" + \

.. "WFJjBghHKXFqUV5ibmphUzeDKFsBYnFxeUphcxANmtOfnpmXiGLNOOpHgB7UBOp\n"
>>> cPickle.loads (zlib.decompress (baseb64.decodestring(s)) [16:])
{’username’: 0, ’'passwd’: 0, ’'login’: 0}
>>> g = "eJzT2sr5Jezh942TUrMty6qglj\n" + \

"WsLGUM54uMLEtNT4+MLmUJZc/LTM/MKmYv1AHSXEAY=\n"
>>> cPickle.loads (zlib.decompress (base64.decodestring(s)) [16:])
{’ _page__'": "login’}

The first string contains a dictionary that defines the name and type of the input fields that were present in the form.
This is placed into the form by the NameRecorderMixin class which is subclassed by SimpleAppContext.
If you look at the definition of SimpleAppContext you will notice the following definition at the start of the
class.

NORMAL = 0
MULTI = 1
MULTISINGLE = 2
FILE = 3

The value 0 for each field in the dictionary above corresponds to field type NORMAL.

When merging the browser request into the execution context the dictionary of field names is used to assign the
value None to any NORMAL or FILE fields, or [] to any LIST fields that were left empty by the user. This is
useful because it lets us write application code which can ignore the fact that fields left empty by the user will not
be sent by the browser when the form is submitted.

The second string contains all of the session values for the application. In the application start page the only
session variable that exists is the __page___ variable. The HiddenFieldSessionMixin places this field in
the form when the template is executed and pulls the field value back out of the browser request into the execution
context when the session is loaded.

The first 20 bytes of the decompressed string is an HMAC-SHA1 cryptographic signature. This was generated by
combining the application secret (passed as the secret argument to the application object) with the pickle string
with a cryptographic hash. When the field is sent back to the application the signing process is repeated. The
pickle is only loaded if the sign sent by the browser and the regenerated signature are the same.

Since the popview application has been provided for example purposes you will probably forgive the usage of
the HiddenFieldSessionMixin class to propagate session state. In a real application that placed usernames
and passwords in the session you would probably do something to protect these values from prying eyes.

Now let’s look at the 1ist .html template file.

Note that the use of the <al-f1lush> tag causes the HTML output to be streamed to the browser. Use of this tag
can give your application a much more responsive feel when generating pages that involve lengthy processing.

A slightly obscure feature of the page is the use of a separate form surrounding the <al-input
type="image"> field used to select each message. An unfortunate limitation of the HTML <input
type="image"> tag is that you cannot associate a value with the field because the browser returns the co-
ordinates where the user pressed the mouse inside the image. In order to associate the message number with the

6.3. The Popview Application 45

Albatross Documentation, Release 1.40

image button we place the message number in a separate hidden <input> field and group the two fields using a
form.

You have to be careful creating a large number of forms on the page because each of these forms will also contain
the _ _albform___and __albstate__ hidden fields. If you have a lot of data in your session the size of the
__albstate__ field will cause the size of the generated HTML to explode.

<html>
<head>
<title>Message List</title>
</head>
<body>
<al-form method="post">
<al-input type="submit" name="refresh" value="Refresh">
</al-form>
<hr noshade>
<table>
<tr align="left">
<td>View</td>
<td>To</td>
<td>From</td>
<td>Subject</td>
</tr>
<al-for iter="m" expr="mbox">
<tr align="left" wvalign="top">
<td>
<al-form method="post">
<al-input type="image" name="detail" src="/icons/generic.gif" border="0">
<al-input type="hidden" name="msgnum" expr="m.value () .msgnum">
</al-form>
</td>
<td><al-value expr="m.value () .hdrs[’To’]"></td>
<td><al-value expr="m.value () .hdrs[’'From’]"></td>
<td><al-value expr="m.value () .hdrs[’Subject’]"></td>
</tr>
<al-if expr="(m.index() % 10) == 9"><al-flush></al-if>
</al-for>
</table>
</body>
</html>

Finally, here is the message detail page detail.html.

<html>
<head>
<title>Message Detail</title>
</head>
<body>
<al-form method="post">
<al-input type="submit" name="1list" value="Back">
</al-form>
<hr noshade>

<table>
<al-for iter="f" expr="('To’, ’'Cc’, 'From’, ’'Subject’)">
<al-if expr="msg.hdrs[f.value()]">

<tr align="left">
<td><al-value expr="f.value()">:</td>
<td><al-value expr="msg.hdrs[f.value()]"></td>
</tr>
</al-if>
</al-for>
</table>
<hr noshade>

46 Chapter 6. Guide to Building Applications

Albatross Documentation, Release 1.40

<pre><al-value expr="msg.body"></pre>
</body>
</html>

6.4 Adding Pagination Support to Popview

If the previous section we constructed a simple application for viewing the contents of a mailbox via the poplib
module. One problem with the application is that there is no limit to the number of messages that will be displayed.
In this section we will build pagination support into the message list page.

We will modify the application to display 15 messages on each page and will add buttons to navigate to the next
and previous pages. The pagesize attribute of the <al-for> tag provides automatic pagination support for
displaying sequences. The only extra code that we need to add is a ___len__ method to the Mbox class which
returns the number of messages in the mailbox. This ___1en__ method is needed to allow the template file to test
whether or not to display a next page control.

The complete sample program is contained in the samples/popview2 directory. Use the install.py script
to install the sample.

cd samples/popview?2
python install.py

Adda__len__ method to the Mbox class in popviewlib.py.

class Mbox:

def __init__ (self, name, passwd):
self.mbox = poplib.POP3 (pophost)
self.mbox.user (name)
self.mbox.pass_ (passwd)

def __getitem__ (self, 1i):
try:
return Msg(self.mbox, i + 1)
except poplib.error_proto:
raise IndexError

def _ len_ (self):

len, size = self.mbox.stat ()
return len

Now we modify the template file 1ist.html.

<html>

<head>
<title>Message List</title>

</head>

<body>
<al-for iter="m" expr="mbox" pagesize="15" prepare/>
<al-form method="post">

<al-if expr="m.has_prevpage () ">

<al-input type="image" prevpage="m" src="/icons/left.gif" border="0">
</al-if>
<al-input type="submit" name="refresh" value="Refresh">

<al-if expr="m.has_nextpage () ">

<al-input type="image" nextpage="m" src="/icons/right.gif" border="0">
</al-if>

</al-form>
<hr noshade>

6.4. Adding Pagination Support to Popview 47

Albatross Documentation, Release 1.40

<table>
<tr align="left">
<td></td>
<td>View</td>
<td>To</td>
<td>From</td>
<td>Subject</td>
</tr>
<al-for iter="m" continue>
<tr align="left" valign="top">
<td><al-value expr="m.value () .msgnum"></td>
<td>
<al-form method="post">
<al-input type="image" name="detail" src="/icons/generic.gif" border="0">
<al-input type="hidden" name="msgnum" expr="m.value () .msgnum">
</al-form>
</td>
<td><al-value expr="m.value () .hdrs[’To’]"></td>
<td><al-value expr="m.value () .hdrs[’From’]"></td>
<td><al-value expr="m.value () .hdrs[’Subject’]"></td>
</tr>
</al-for>
</table>
<hr noshade>
</body>
</html>

The <al-for> tag just below the <body> tag contains two new attributes; pagesize and prepare.

The pagesize turns on pagination for the <al-for> ListIterator object and defines the size of each
page. In order to remember the current top of page between pages, the tag places the iterator into the session.
When saving the iterator, only the top of page and pagesize are retained.

The prepare attribute instructs the <al-for> tag to perform all tasks except actually display the content of
the sequence. This allows us to place pagination controls before the actual display of the list.

6.5 Adding Server-Side Session Support to Popview

So far we have been saving all application state at the browser inside hidden fields. Sometimes it is
preferable to retain state at the server side. Albatross includes support for server-side sessions in the
SessionServerContextMixin and SessionServerAppMixin classes. In this section we will mod-
ify the popview.py program to use server-side sessions.

The SessionServerAppMixin class uses a socket to communicate with the
session-server/al-session-daemon session server. You will need to start this program before
using the new popview application.

In previous versions of the program we were careful to place all user response into forms. This allowed Albatross
to transparently attach the session state to hidden fields inside the form. When using server-side sessions Albatross
does not need to save any application state at the browser so we are free to use URL style user inputs. To illustrate
the point, we will replace all of the form inputs with URL user inputs.

The complete sample program is contained in the samples/popview3 directory. Use the install.py script
to install the sample.

cd samples/popview3
python install.py

The new 1ist.html template file follows.

48 Chapter 6. Guide to Building Applications

Albatross Documentation, Release 1.40

<html>
<head>
<title>Message List</title>
</head>
<body>
<al-for iter="m" expr="mbox" pagesize="15" prepare/>
<al-if expr="m.has_prevpage () "><al-a prevpage="m">Prev</al-a> | </al-if>
<al-a href="refresh=1">Refresh</al-a>
<al-if expr="m.has_nextpage()"> | <al-a nextpage="m">Next</al-a></al-if>
<hr noshade>
<table>
<tr align="left">
<td></td>
<td>To</td>
<td>From</td>
<td>Subject</td>
</tr>
<al-for iter="m" continue>
<tr align="left" wvalign="top">
<td align="right">
<al-a expr="'msgnum=%s’ % m.value () .msgnum">
<al-value expr="m.value () .msgnum"></al-a>
</td>
<td><al-value expr="m.value () .hdrs[’To’]"></td>
<td><al-value expr="m.value () .hdrs[’/From’]"></td>
<td><al-value expr="m.value () .hdrs[’Subject’]"></td>
</tr>
</al-for>
</table>
<hr noshade>
</body>
</html>

Next the new detail.html template file.

<html>
<head>
<title>Message Detail</title>
</head>
<body>
<al-a href="list=1">Back</al-a>
<hr noshade>

<table>
<al-for iter="f" expr="('To’, ’'Cc’, 'From’, ’'Subject’)">
<al-if expr="msg.hdrs[f.value()]">

<tr align="left">
<td><al-value expr="f.value()">:</td>
<td><al-value expr="msg.hdrs[f.value()]"></td>
</tr>
</al-if>
</al-for>
</table>
<hr noshade>
<pre><al-value expr="msg.body"></pre>
</body>
</html>

One of the more difficult tasks for developing stateful web applications is dealing with browser requests submitted
from old pages in the browser history.

When all application state is stored in hidden fields in the HTML, requests from old pages do not usually cause
problems. This is because the old application state is provided in the same request.

6.5. Adding Server-Side Session Support to Popview 49

Albatross Documentation, Release 1.40

When application state is maintained at the server, requests from old pages can cause all sorts of problems. The
current application state at the server represents the result of a sequence of browser requests. If the user submits
a request from an old page in the browser history then the fields and values in the request will probably not be
relevant to the current application state

Making sure all application requests are uniquely named provides some protection against the application pro-
cessing a request from another page which just happened the share the same request name. It is not a complete
defense as you may receive a request from an old version of the same page. A request from an old version of a
page is likely to make reference to values which no longer exist in the server session.

Some online banking applications attempt to avoid this problem by opening browser windows that do not have
history navigation controls. A user who uses keyboard accelerators for history navigation will not be hindered by
the lack of navigation buttons.

The popview application does not modify any of the data it uses so there is little scope for submissions from old
pages to cause errors.

By changing the base class for the application object we can gain support for server side sessions. Albatross
includes a simple session server and supporting mixin classes.

The new application prologue looks like this:

#!/usr/bin/python

from albatross import SimpleSessionApp, SessionAppContext
from albatross.cgiapp import Request

import popviewlib

The execution context now inherits from SessionAppContext:

class AppContext (SessionAppContext) :

def open_mbox (self):
if hasattr(self.locals, ’"mbox’):
return
self.locals.mbox = popviewlib.Mbox (self.locals.username, self.locals.passwd)

def read_msg(self):
if hasattr(self.locals, ’'msg’):
return
self.locals.msg = self.locals.mbox[int (self.locals.msgnum) — 1]
self.locals.msg.read_body ()

And the new application class looks like this:

class App (SimpleSessionApp) :

def _ _init_ (self):

SimpleSessionApp.__init__ (self,
base_url='popview.py’,
template_path=’.",
start_page=’login’,
secret='-=-secret-=-',
session_appid='popview3’)

for page_class in (LoginPage, ListPage, DetailPage):

self.register_page (page_class.name, page_class/())

def create_context (self):
return AppContext (self)

The session_appid argument to the constructor is used to uniquely identify the application at the server so that
multiple applications can be accessed from the same browser without the session from one application modifying
the session from another.

50 Chapter 6. Guide to Building Applications

Albatross Documentation, Release 1.40

Apart from changes to load the new template files, we also need to change the ListPage class because we
changed the method of selecting messages from the message list.

class ListPage:
name = ’list’

def page_process(self, ctx):
if ctx.reqg_equals ('msgnum’) :
ctx.set_page (’'detail’)

def page_display(self, ctx):
ctx.open_mbox ()
ctx.run_template (’list.html’)

6.6 Building Applications with Page Modules

Implementing an application as a monolithic program is fine for small applications. As the application grows
the startup time becomes an issue, as does maintenance. Albatross provides a set of classes that allow you to
implement each page in a separate Python module. In this section we will convert the popview application to
this type of application.

Converting a monolithic application to a page module application is usually fairly simple. First we must turn each
page object into a page module. When we used page objects, the class that implemented each page was identified
by the name class member. With page modules the name of the module identifies the page that it processes.

The complete sample program is contained in the samples/popview4 directory. Use the install.py script
to install the sample.

cd samples/popview4
python install.py

The LoginPage class becomes login.py.

import poplib

def page_process (ctx):
if ctx.reg_equals(’login’):
if ctx.locals.username and ctx.locals.passwd:
try:
ctx.open_mbox ()
ctx.add_session_vars (’username’, ’passwd’)
except poplib.error_proto:
return
ctx.set_page(’list’)

def page_display (ctx):
ctx.run_template(’ login.html’)

The ListPage class becomes 1ist.py.

def page_process(ctx):
if ctx.reqg_equals ('msgnum’) :
ctx.set_page('detail’)

def page_display (ctx):

6.6. Building Applications with Page Modules 51

Albatross Documentation, Release 1.40

ctx.open_mbox ()
ctx.run_template(’list.html”)

And the DetailPage class becomes detail.py.

def page_process (ctx):
if ctx.req_equals(’/list’):
ctx.set_page(’list’)

def page_display(ctx):
ctx.open_mbox ()
ctx.read_msg ()
ctx.run_template ('detail.html’)

When using page modules we do not need to register each page module. When Albatross needs to locate the code
for a page it simply imports the module. So the entire popview.py program now looks like this:

#!/usr/bin/python

from albatross import ModularSessionApp, SessionAppContext
from albatross.cgiapp import Request

import popviewlib

class AppContext (SessionAppContext) :

def open_mbox (self):
if hasattr(self.locals, ’'mbox’):
return
self.locals.mbox = popviewlib.Mbox(self.locals.username, self.locals.passwd)

def read_msg(self):
if hasattr(self.locals, 'msg’):
return
self.locals.msg = self.locals.mbox[int (self.locals.msgnum) — 1]
self.locals.msg.read_body ()

class App (ModularSessionApp) :

def _ init_ (self):

ModularSessionApp.__init__ (self,
base_url='popview.py’,
module_path=".",
template_path=".",
start_page=’login’,
secret='—=-secret-=-',
session_appid='popviewd’)

def create_context (self):
return AppContext (self)

app = App ()

if _ name_ == '_ _main__ ’:
app.run (Request ())

52 Chapter 6. Guide to Building Applications

Albatross Documentation, Release 1.40

6.7 Random Access Applications

In the popview application the server is in complete control of the sequence of pages that are served to the browser.
In some applications you want the user to be able to bookmark individual pages for later retrieval in any desired
sequence. Albatross provides application classes built with the RandomPageModuleMixin class for this very

purpose.

The random sample is provided to demonstrate the use of the RandomModularSessionApp class. Use the
install.py script to install the sample.

cd samples/random
python install.py

The complete mainline of the randompage . py sample is shown below.

#!/usr/bin/python
from albatross import RandomModularSessionApp
from albatross.cgiapp import Request

app = RandomModularSessionApp (base_url=’'randompage.py’,
page_path='pages’,
start_page='tree’,
secret='-=-secret-=-',
session_appid=’random’)

if _ name_ == "7 main__ '
app.run (Request ())

When processing the browser request the application determines which page to serve to the browser by inspecting
the URL in the browser request. The page identifier is taken from the part of the URL which follows the base_url
argument to the constructor. If the page identifier is empty then the application serves the page identified by the
start_page argument to the constructor.

If you point your browser at http://www.object-craft.com.au/cgi-bin/alsamp/random/randompage.py you will no-
tice that the server has redirected your browser to the start page.

The sample program defines two pages which demonstrate two different ways to direct user navigation through
the application.

The tree.html page template uses a form to capture user input.

<html>
<head><title>Here is a Tree</title></head>
<body>
<al-lookup name="indent">
<al-item expr="0"> </al-item>
<al-item expr="1"> |</al-item>
<al-item expr="2"> \</al-item>
</al-lookup>
<hl>Here is a Tree</hl>
<al-form method="post">

<pre>
<al-tree iter="n" expr="tree">
<al-for iter="c" expr="range (n.depth())">
<al-value expr="n.line(c.value())" lookup="indent">
</al-for>
—<al-input type="checkbox" alias="n.value () .selected">
<al-value expr="n.value () .name" whitespace="newline">
</al-tree>
</pre>

6.7. Random Access Applications 53

http://www.object-craft.com.au/cgi-bin/alsamp/random/randompage.py

Albatross Documentation, Release 1.40

<al-input type="submit" name="save" value="Save">

<al-input type="submit" name="paginate" value="To Paginate Page">
</al-form>

</body>

</html>

During conversion to HTML the <al-form> tag automatically places the name of the current page into the
action attribute. This makes the browser send the response back to the same page module (tree.py).

from utils import Node

def page_display (ctx):
ctx.run_template (' tree.html’”)

def page_process (ctx) :
if ctx.reg _equals(’'paginate’):
ctx.redirect (' paginate’)

if not hasattr(ctx.locals, ’"tree’):
ctx.locals.tree \

= Node (’a’, [Node(’a’, [Node('a’),

Node ("b") 1),
Node ("b’, [Node(’a’, [Node(’a’, [Node('a’),
Node ("b")1)1),

Node ("b"),
Node ("c’, [Node(’'a’)

Node ("b")1)1)1)
ctx.add_session_vars (' tree’)

When the application receives the paginate request it uses the redirect () method to direct the browser to
anew page.

The paginate.html page template uses a URLs to capture user input.

<html>
<head><title>Pagination Example</title></head>
<body>
<hl>This is a list with pagination...</hl>

<al-for iter="i" expr="data" pagesize="10" prepare/>
<al-if expr="i.has_prevpage()">
<al-a prevpage="i">prev</al-a>

</al-if>
<al-for iter="i" pagesize="10">
<al-if expr="i.count ()">,</al-if> <al-value expr="i.value()">
</al-for>
<al-if expr="i.has_nextpage ()" whitespace>
<al-a nextpage="i">next</al-a>
</al-if>
<p>
<al-a href="tree">To Tree Page</al-a>
</body>
</html>

During conversion to HTML the <al-a> tag automatically translates the href="tree" attribute into a
URL which requests the tree page from the application. Since the browser is doing all of the work, the
paginate.py module which handles the paginate page is very simple.

def page_display(ctx):
ctx.locals.data = range(100)
ctx.run_template (' paginate.html’)

54 Chapter 6. Guide to Building Applications

Albatross Documentation, Release 1.40

6.8 The Albatross Session Server

The Albatross Session server works in concert with the execution context and application mixin classes in the
albatross.session module to provide server-side session recording. The application and the server com-
municate via TCP sockets. By default, session servers listen on port 34343.

More than one Albatross application can share a single session server process, and applications can be deployed
over multiple web server hosts.

6.8.1 Sample Simple Session Server
The albatross.simpleserver module is a sample session server. It can either be used stand-alone, or
imported into other Python scripts.

The session server uses TCP sockets to communicate with the application mixin, by default listening on port
34343. The server port can be changed by using the —p or ——port= command line argument. Internally the
server uses a select loop to allow connections from multiple applications simultaneously.

Note that the daemon does not need to run as root, provided it listens on a port above 1024. If possible, you
should run it under a user ID not shared by any other processes (and not nobody). You should also ensure
that only authorised clients can connect to your session server, as the protocol provides no authentication or
authorisation mechanisms.

Application constructor arguments which are relevant to the session server are:
e session_appid

This is used to identify the application with the session server. It is also used as the session id in the cookie
sent to the browser.

e session_server ="' localhost’

If you decide to run the session server on a different machine to the application you must pass the host name
of the session server in this argument.

* server_port= 34343
If you decide to run the session server on a different port you must pass the port number in this argument.
* session_age = 1800

This argument defines the amount of time in seconds for which idle sessions will kept in the server.

6.8.2 Unix Session Server Daemon

In the session-server directory of the source distribution is a Unix daemon version of the
simpleserver.py session server, called al-session—daemon.

Long running server processes under Unix need to be backgrounded, and disassociated from the terminal device
on which they were started. al-session—-daemon provides these functions, as well as recording the process
ID of the daemon so as to allow it to be easily shut-down.

Note that the daemon does not need to run as root, provided it listens on a port above 1024, and can write to it’s
pid and log directories. If possible, you should run it under a user ID not shared by any other processes (and not
nobody). You should also ensure that only authorised clients can connect to your session server, as the protocol
provides no authentication or authorisation mechanisms.

Usage: al-session-daemon [options]... <command>

Where [options] are:

-D, ——-debug Write debugging to log
-h, —--help Display this help and exit
-k <pid-file>, Record server pid in <pid-file>, default is

6.8. The Albatross Session Server 55

Albatross Documentation, Release 1.40

—-pidfile=<pid-file> /var/run/al-session—-daemon.pid
-p <port>, —--port=<port> Listen on <port>, default is 34343
-1 <log-file>, Write log to <log-file>, default is
——log=<log-file> /var/log/al-session—-daemon. log

<command> is one of:

start start a new daemon
stop kill the current daemon
status request the daemon’s status

6.8.3 Server Protocol
You can see the session server in action by using telnet.

djclrat:~$ telnet localhost 34343

Trying 127.0.0.1...

Connected to localhost.

Escape character is "7]’.

new myapp 3600

OK 38b80b3f546c8cfa

put myapp 38b80b3f546c8cfa

OK - send data now, terminate with blank line
here is my session data

it is on multiple lines

OK

get myapp 38b80b3f546c8cfa
OK - session follows

here is my session data

it is on multiple lines

del myapp 38b80b3f546c8cfa
OK

get myapp 38b80b3f546c8cfa
ERROR no such session

quit
Connection closed by foreign host.
djclrat:~$

All dialogue is line based using a CRLF end of line sequence. Session ids are generated by the server and each
application has its own set of session ids. The application mixin class in the albatross.session module
uses the session_appid argument to the constructor as the application id with the session server. Note that this

application id is also used in the cookie sent to the browser.

If a command was successful the server response line will start with the text * OK’ otherwise it will start with

"ERROR’.

Create New Session

To create a new session for the appid application which will be deleted if left idle for more than age seconds the

application sends a line of the form:

"new " appid " " age CRLF

Successful response will be a line of the form:

"OK " sesid CRLF

56 Chapter 6. Guide to Building Applications

Albatross Documentation, Release 1.40

Save Session

To save data into an existing session the application sends a line of the form:
"put " appid " " sesid CRLF

If the session exists in the server it will respond with the following line:

"OK - send data now, terminate with blank line" CRLF
The program then sends a sequence of text lines terminated by a single blank line. The server then responds with:

"OK" CRLF

Retrieve Session

To retrieve data for an existing session the application sends a line of the form:
"get " appid " " sesid CRLF

If the session exists in the server it will respond with the following line:

"OK - session follows" CRLF

The session data saved previously will then be sent terminated by a single blank line.

Delete Session

To delete an existing session the application sends a line of the form:

"del " appid " " sesid CRLF

If the session exists it will be deleted and the server will respond with the following line:

"OK" CRLF

Quit
To disconnect from the server the application sends a line of the form:
"quit" CRLF

The server will then close the connection.

6.9 Application Deployment Options

In all of the previous sections you will note that all of the programs used the Request class from the
albatross.cgiapp module to deploy the application as a CGI script.

The choice of Request class determines how you wish to deploy your application. Albatross supplies a number
of pre-built Request implementations suited to various deployment methods. You should import the Request
method from the appropriate module:

6.9. Application Deployment Options 57

Albatross Documentation, Release 1.40

Deployment Method Request Module

CGI albatross.cgiapp
mod_python albatross.apacheapp
FastCGI_python albatross.fcgiapp
Stand-alone Python HTTP server | albatross.httpdapp

By placing all deployment dependencies in a Request class you are able to change deployment method with only
minimal changes to your application mainline code. You could, for instance, catry out your initial development as
a stand-alone Python HTTP server, where debugging is easier, and final deployment as FastCGI.

You could also develop your own Request class to deploy an Albatross application in other ways, such as using
the Medusa web server (http://www.amk.ca/python/code/medusa.html), or to provide a Request class which for
performing unit tests on your application.

The chapter on mod_python contains an example where the popview application is changed from CGI to
mod_python.

6.9.1 cGI Deployment
The albatross.cgiapp module contains a Request class to allow you to deploy your application using
CGI.

CGI is the simplest and most common application deployment scheme. The application is started afresh by your
web server to service each client request, and is passed client input via the command line and stdin, and returns
it’s output via stdout.

An example of a CGI application:

#!/usr/bin/python
from albatross.cgiapp import Request

class Application(...):
app = Application()

if _ name_ == '_ _main_ ’:
app.run (Request ())

6.9.2 mod_python Deployment

The albatross.apacheapp module contains a Request class to allow you to deploy your application using
mod_python 2,

In the following example, we change the popview application from CGI to mod_python. The complete sample
program is contained in the samples/popview5 directory. Use the install.py script to install the sample.

cd samples/popviewb
python install.py

The new popview.py mainline follows.
from albatross import ModularSessionApp, SessionAppContext
from albatross.apacheapp import Request
import popviewlib
class AppContext (SessionAppContext) :

def open_mbox (self):

2 For more information on mod_python, including installation instructions, see http://www.modpython.org/.

58 Chapter 6. Guide to Building Applications

http://www.amk.ca/python/code/medusa.html
http://www.modpython.org/

Albatross Documentation, Release 1.40

if hasattr(self.locals, ’'mbox’):
return
self.locals.mbox = popviewlib.Mbox(self.locals.username, self.locals.passwd)

def read_msg(self):
if hasattr(self.locals, 'msg’):
return
self.locals.msg = self.locals.mbox[int (self.locals.msgnum) - 1]
self.locals.msg.read_body ()

class App (ModularSessionApp) :

def _ init_ (self):
ModularSessionApp.__init__ (self,

base_url=’'popview.py’,
module_path=’-=-install dir-=-',
template_path=’-=-install _dir-=-',
start_page=’login’,
secret=’'-=-secret-=-',
session_appid='popview5’)

def create_context (self):
return AppContext (self)

app = App ()

def handler (req) :
return app.run(Request (req))

The handler () function is called by mod_python when a browser request is received that must be handled
by the program.

You also need to create a . htaccess file to tell Apache to run the application using mod_python.

DirectoryIndex popview.py
SetHandler python-program
PythonHandler popview

Assuming you install the popview sample below the /var/www directory you will need configure Apache settings
for the /var/www/alsamp directory:

<pirectory [/ [v[az/[w[u[u[/[a[1]s]aln[p)/>
AllowOverride FileInfo Indexes
Order allow,deny
Allow from all

</Directory>

6.9.3 FastCGI Deployment

The albatross.fcgiapp module contains a Request class to allow you to deploy your application using
FastCGI °.

Applications deployed via CGI often perform poorly under load, because the application is started afresh to ser-
vice each client request, and the start-up time can account for a significant proportion of request service time.
FastCGI attempts to address this by turning the application into a persistent server that can handle many client
requests.

3 For more information on Fast CG1I, including installation instructions, see http:/www.fastcgi.com/.

6.9. Application Deployment Options 59

http://www.fastcgi.com/

Albatross Documentation, Release 1.40

Unlike mod_python, where applications run within the web server, FastCGI applications communicate with
the web server via a platform-independent socket protocol. This improves security and the resilience of the web
service.

To deploy your application via Fast CGI and Apache, you need to configure Apache to load mod_fastcgi. so,
configure it to start your script as a FastCGI server, and use the albatross.fcgiapp Request class in
your application. As an example of Apache configuration:

LoadModule fastcgi_module /usr/lib/apache/1.3/mod_fastcgi.so

<IfModule [m|o dk‘ﬁf als|tfc|g| 1T‘1c>

<Directory [u |
AddHandler fastcgi-script py
Options +ExecCGI
</Directory>
</IfModule>

[/Talele]t[ilelalc i olnV>

And the application main-line:

#!/usr/bin/python
from albatross.fcgiapp import Request, running

class Application(...):

app = Application()
if _ name_ == '_ _main_ ’:
while running () :
app.run (Request ())

6.9.4 Stand-alone Python HTTP Server Deployment

The standard Python libraries provide a pure-Python HTTP server in the BaseHTTPServer module. Code
contributed by Matt Goodall allows you to deploy your Albatross applications as stand-alone scripts using this
module to service HTTP requests.

Unlike the other Request classes, applications deployed via the stand-alone Python HTTP server do not require
you to instantiate the Request class directly. Instead, the al-httpd script imports your application (specifi-
cally, the script that instantiates the application object), and starts the HTTP server.

Currently, applications deployed via the stand-alone http server are single threaded, meaning that other requests
are blocked while the current request is being serviced. In many cases this is not a problem as the requests are
handled quickly, but if your application takes a significant amount of time to generate it’s results, you may want
to consider other deployment options for production use.

The stand-alone http server makes it particularly easy to deploy Albatross applications, and is a great way to debug
applications without the complications that mod_python and FastCGI necessarily entail.

Most of the Albatross samples can be run under the stand-alone server:

$ cd samples/tree?2
$ al-httpd tree.app 8080 /alsamp/images ../images/

6.10 Albatross Exceptions

exception AlbatrossError
An abstract base class all Albatross exceptions inherit from.

60 Chapter 6. Guide to Building Applications

Albatross Documentation, Release 1.40

exception UserError
Raised on abnormal input from the user. All current use of this exception is through the SecurityError
subclass.

exception ApplicationError
Raised on invalid Albatross use by the application, such as attempting to set a response header after the
headers have been sent to the client. Template errors are also instances of this exception.

exception InternalError
Raised if Albatross detects an internal error (bug).

exception ServerError
Raised on difficulties communicating with the session server or errors reading server-side session files.

exception SecurityError
A subclass of UserError, this exception is raised when Albatross detects potentially hostile client activity.

exception TemplateLoadError
A subclass of ApplicationError, this exception is raised if a template cannot be loaded.

exception SessionExpired
A subclass of UserError, this exception is raised when a client attempts to submit form results against a
session that has expired.

6.10. Albatross Exceptions 61

Albatross Documentation, Release 1.40

62 Chapter 6. Guide to Building Applications

CHAPTER
SEVEN

EXTENSIONS

Extensions add optional functionality to Albatross. We suggest you gain some experience with the core Albatross
functionality before tackling the topics covered here.

7.1 Albatross Forms Guide

Albatross Forms provides support for developing Albatross applications which gather data from the user, validate
it, and then return the user’s data to the app. Much of this work is mechanical and it is tedious and error prone
writing the same code on different pages in the application.

Using Forms lets the developer organise the presentation of related data on a web page programmatically. The
Forms support handles the basic layout, type conversions and validation as the user interacts with the form. By us-
ing centrally defined data types, presentation, validation and error reporting can be done consistently and modified
easily. It has been our experience that development is much faster and lots of code can be removed from the Al-
batross templates where it’s hard to read, difficult to test and gets mucked up by web designers using WYSIWYG
design tools.

Albatross Forms is designed to use CSS to change the layout of the forms when they are displayed rather than
encoding the HTML into the form tags. This consolidates the web site’s presentation and makes it easier to change
the presentation globally.

7.1.1 Concepts

There are three main concepts that sit behind the Albatross Forms implementation:
* Field

A data input field. It can format its output and validate its input. It contains a copy of the value so that the
user can edit it without needing to maintain a separate copy in the application.

¢ Fieldset

Groups together a list of Fields and renders them in a table. It is conceptually related the HTML fieldset tag
which groups related input fields together. Fieldsets are intended to only hold data fields. If you try to insert
a Button into a Fieldset it’s not likely to work, in part because Fieldset expects that each Field member will
respond to certain methods, and in part because notionally is that buttons apply actions to all the fields in
the fieldset.

¢ Form

Manages the all of the fields in the form. Most interactions in the application are with Form instances:
they coordinate loading values from model objects (typically attributes of classes) into the Fields, organise
rendering and updating the values from the browser, validation, and storing the values back into the model
objects.

63

Albatross Documentation, Release 1.40

In practice, the developer will assemble a Form instance containing one or more Field instances and place this
Forminto ctx.locals (optionally fetching field values from an associated data or Model class via the 1oad ()
method).

The developer then refers to this Form via a new <alx—form> tag in the page template (note that the
<alx-form> must still be contained within an <al-form> tag in the page template). When the template
is executed, the Form will be rendered to an HTML table containing appropriate inputs (including any values
associated with the Fields).

When the user subsequently submits their responses, the developer will call the Form instance merge () method
from the page_process () method and the user values will be merged back to the associated data storage class
(or Model).

7.1.2 Getting started

You need to have a version of Albatross which has the Albatross Forms support included (or have installed it by
hand yourself). You can quickly test whether it is present by running:

>>> from albatross.ext import form

If it’s missing, you’ll see an import error.

Registering the <alx-form> tag

In each Albatross application, there is a point at which an App subclass is instantiated (usually in app.py or
app.cgi or wherever the main entry point of your application is). This instance needs to be told about the new
<alx-form> tag. This is done with code that looks something like this:

import albatross
from albatross.ext import form

if _ name_ == '_ main_ ’:
app = albatross.SimpleApp ()
app.register_tagclasses (form.tag_classes)

app.run (Request ())

Alternatively, if you subclass one of the Albatross application classes, you can register the new tags in your
subclass’s constructor method (__init_):

import albatross
from albatross.ext import form

class Application (albatross.SimpleApp) :
def _ _init__ (self, =xargs):

albatross.SimpleApp._ _init__ (self, =xargs)
self.register_tagclasses (xform.tag_classes)

7.1.3 A simple example

Here is a simple example of how we could use Albatross Forms to collect a username and password from the user.

We need to define a model class to hold the data:

import pwd, crypt

class User:

64 Chapter 7. Extensions

Albatross Documentation, Release 1.40

def init (self, username, password):
self.username = username
self.password = password

def is_password_valid(self):
try:
pw = pwd.getpwnam(self.username)
except KeyError:
return False

return (crypt.crypt (self.password, pw.pw_passwd)

Next, we need to define a form to display the fields:

from albatross.ext.form import =
class LoginForm(FieldsetForm) :

def _ init_ (self, user):

fields = (
TextField ('’ Username’, ’username’),
PasswordField ('’ Password’, ’password’),

)

fieldsets = (Fieldset (fields),)

buttons = Buttons ((
Button (’Login’, ’login’),

))

FieldsetForm.__init__ (self, ’User login’, fieldsets,

self.load (user)

== pw.pw_passwd)

buttons=buttons)

We need to create an instance of the Login model and maintain that so that any captured data is retained. In our

login.py, we use:

def page_enter (ctx):
if not ctx.has_value(’'user’):
ctx.locals.user = User ("7, ')
ctx.add_session_vars (' user’)

ctx.locals.login_form = LoginForm(ctx.locals.user)

ctx.add_session_vars ('’ login_form’)
ctx.locals.login_error = "’/

In login.html, to display the form to the user we use:

<al-form method="post">
<alx-form name="login_form" errors />
<al-expr expr="login_error" />
</al-form>

When the user presses the “Login” button, it will come back to our page_process method in login.py. We check
if the username and password are correct and punt them into the application proper (via the “search” page) or tell

them they’ve got it wrong:

def page_process (ctx) :
if ctx.req_equals(’login’):

nothing to validate

ctx.locals.login_form.merge (ctx.locals.user)

if ctx.locals.user.is_password_valid():
ctx.redirect (' search’)

else:
ctx.locals.login_error = ’'Login incorrect’

7.1. Albatross Forms Guide

65

Albatross Documentation, Release 1.40

7.1.4 Flow of Control

The flow of control through Albatross Forms is tied in with Albatross’s flow of control.

A common mistake is to reinitialise the form from the model part way through the user’s interaction with the page
(ie, before they’ve saved it). It winds up losing any changes that the user has made on the form. The lesson here
is that the form should only be loaded from the model once when the user starts interacting with it; don’t reload it
on each page refresh.

1.

Constructor

Create the form itself.

Load values from model

This is often done in the form subclass constructor method (__init_).
Display the form

Render the form to the web page, using <alx-form name="model_form” errors> in your Albatross template
for the page.

Validate

Check that the data that the user entered is correct. The call to validate will raise a FormValidationError
exception.

Merge
Update the data class (Model) with the data fields collected from the form.

7.1.5 Field types

Albatross Forms defines a number of standard fields. You can also add your own, subclassing the standard fields
to add validation or type-casting. The standard fields are:

TextField
A normal text input. Corresponds to the <input type="text"> tag.
PasswordField

Same as a text field but it doesn’t display the characters as the user enters them. Corre-
sponds to the <input type="password"> tag.

StaticField

A TextField with static content.
TextArea

Corresponds to the <textarea> tag.
IntegerField

An integral value, get_value () will return an int type, non-integer values will result
inaFieldvalidationErroronvalidate ().

FloatField

A floating point value, get_value () will return a £1oat type, non-floating point val-
ues will resultina FieldvValidationError onvalidate ().

Checkbox
Renders as <input type="checkbox”>, get_value () will return a bool type.

SelectField

66

Chapter 7. Extensions

Albatross Documentation, Release 1.40

Returns one of the values listed in the (value, display_value) list passed to the
constructor. If the value can be converted to an int, it will be; otherwise it will be returned
asastr.

RadioField

Returns one of the values listed in the (value, display_value) list passed to the
constructor. If the value can be converted to an int, it will be; otherwise it will be returned
asastr.

FileField (not implemented yet)

Internal storage within a field

The interaction of the field with the browser is complicated because the browser requires and returns string values,
which results in the loss of type information for the objects that the fields wrap.

To manage this, the field class notes when the field is rendered to the browser and converts the value to a string
using the object’s get_display_value () method. When the values are posted back to the form by the
browser, they are returned as strings. If you need to access the value stored in a field, use the get_value ()
method which tracks the type of the stored representation and does a conversion (using get_merge_value ())
when appropriate.

7.1.6 A more complex example

Here is a rather more complex example that uses a number of different input types.

Here’s the model:

class User:

def _ init_ (self):
self.name = "7/
self.an_int = 0
self.a_float =
self.country =
self.password = "’
self.active = False

0.0
0
The form that describes how we want it laid out:

Slightly abridged list of all the countries in the world.
country_names = (

"Australia’, "Belgium’, "Cuba’,
"Greenland’, 'Madagascar’, "Netherlands’,
"Switzerland’, "Uzbekistan’, " Zimbabwe’

)

country_menu = [e for e in enumerate (country_names)]

fields = (

TextField ('Name’, ’'name’, required=True),
IntegerField(’ Integer’, 'an_int’),
FloatField(’Float’, "a_float’),
SelectField(’Country’, country_menu, ’'country’),
PasswordField (' Password’, ’password’,
required=True),

Checkbox (" Active’, ’Tactive’),

)

buttons = Buttons ((
Button (’ Save’, ’save’),
Button (' Cancel’, ’cancel’),

))

fieldsets = (Fieldset (fields),)

7.1. Albatross Forms Guide 67

Albatross Documentation, Release 1.40

ctx.locals.test_form = FieldsetForm(’'User details’,
fieldsets,
buttons=buttons)

Render the form on the page:

<al-form method="POST">
<div class="alxform">
<alx—-form name="test_form" errors />
</div>
</al-form>

To render the form as static report:

<div class="alxform">
<alx—-form name="test_form" static />
</div>

In the forms.py file, the code looks like:

def page_enter (ctx) :
if not ctx.has_value(’'test_form’):
ctx.locals.description = User ()
ctx.add_session_vars (’'description’)
ctx.locals.test_form = test_form # see above

def page_display(ctx):
ctx.run_template (' forms.html’)

def page_process (ctx) :
if ctx.req_equals (’save’):
try:
ctx.locals.test_form.validate ()
except FormValidationError, e:
ctx.locals.test_form.set_disabled(False)
return
ctx.locals.test_form.set_disabled(True)
ctx.locals.test_form.merge (ctx.locals.description)
elif ctx.reqg_equals(’'reset’):
ctx.locals.test_form.clear ()
ctx.locals.test_form.set_disabled(False)
elif ctx.reqg_equals(’cancel’):
if ctx.locals.test_form.disabled:
ctx.locals.test_form.set_disabled(False)
else:
ctx.locals.test_form.clear ()
ctx.redirect ('main’)

7.1.7 Customising Fields

Here is an example of how we created a MoneyF ield that knows how to validate a currency value. Both parser
and formatter are modules that we wrote to convert between formats. Our modules deal in dollars and cents but
that’s hidden from the application code.

Note that the parser needs to be able to parse the output of the formatter: the field will be initialised with the
formatter’s output when it is rendered. It is reasonable to expect the parser to accept “$5.50” if that is the format
that the application is presenting to the user.

68 Chapter 7. Extensions

Albatross Documentation, Release 1.40

import parser, formatter
class MoneyField (FloatField) :

def validate(self, form, s):

s = s.strip()

if not self.required and not s:
return

try:

parser.money (s)
except ValueError, e:
raise FieldvValidationError (' Invalid value "%s" for money’ % s)

def get_merge_value(self, s):

s = s.strip()
if not self.required and not s:
return

return parser.money (s)

def get_display_value(self, ctx, form):
return formatter.money (self.get_value())

7.1.8 Attaching buttons to a form

It’s common to have buttons at the bottom of a form even if they just say “Save” and “Cancel”. This is supported
in Albatross Forms by adding an optional keyword arg when creating the Form object, for example:

from albatross.ext.form import =
class LoginForm(FieldsetForm) :

def _ init_ (self, user):

fields = (
TextField (' Username’, ’'username’),
PasswordField ('’ Password’, ’password’),

)

fieldsets = (Fieldset (fields),)

buttons = Buttons ((
Button ('’ Login’, ’login’),

))

FieldsetForm.__init__ (self, ’User login’, fieldsets, buttons=buttons)
self.load (user)

The Buttons class takes a list of Button instances in its constructor and displays buttons in the bottom right
hand corner of the form display.

You check for the buttons being clicked by the user in the usual Albatross way in page_process:

def page_process (ctx) :
if ctx.req_equals(’save’):

7.1.9 Table support

Rendering tables using Albatross Forms is relatively straightforward, using them for input is no harder.

Table support revolves around two classes: IteratorTable and IteratorTableRow.

7.1. Albatross Forms Guide 69

Albatross Documentation, Release 1.40

IteratorTable acts as a field in a form in which the table is rendered. The first argument to the
IteratorTable constructor is the name of the attribute in the class in which the the table is stored. This
is necessary so that Albatross can navigate through the form’s fields to update the values from the user’s browser.
It’s a little arcane but it isn’t too bad.

IteratorTableRow should be subclassed within the application to render each row in turn.

The TteratorTable class steps through the list of objects that it’s passed and calls the TteratorTableRow
subclass that’s specified with each object in turn. Each of these is responsible for rendering a single row.

When the ITteratorTable is rendered, it will display the header columns (if specified) and then ask each row
to render itself.

Here’s an example which should render a list of name, address and phone numbers in a table. First we define the
model object:

class Entry:
def _ init__ (self, name, address, phone):
self.name = name
self.address = address
self.phone = phone

Now we’ll define the components of the form to render a list of Entry instances:

class EntryTableRow (IteratorTableRow) :

def _ _init__ (self, entry):

cols = (
Col ((TextField (' Name’, ’'name’),)),
Col ((TextField (' Address’, ’"address’),)),
Col ((TextField (' Phone’, ’"phone’),)),

)

IteratorTableRow.__init_ (self, cols)

self.load (entry)

class EntryTableForm(Form) :

def _ init_ (self, entries):
headers = Row ((
HeaderCol ((Label (' Name’),)),
HeaderCol ((Label (" Address’))) .,
((

14
HeaderCol ((Label (' Phone’),)),
))
self.table = IteratorTable(’table’, headers, EntryTableRow, entries,
html_attrs={’width’: 7100%"})

Form._ _init_ (self, ’Address book’, (self.table,))

To create the form:

def page_enter (ctx):
entries = [
Entry (’Ben Golding’,
"Object Craft, 123/100 Elizabeth St, Melbourne Vic 3000’,
"+61 3 9654-9099"),
Entry (’Dave Cole’,
"Object Craft, 123/100 Elizabeth St, Melbourne Vic 3000’,
"+61 3 9654-9099"),
1

if not ctx.has_value(’'entry_table_form’):

70 Chapter 7. Extensions

Albatross Documentation, Release 1.40

ctx.locals.entry_table_form = EntryTableForm(entries)
ctx.add_session_vars (‘entry_table_form’)

Rendering the list just requires:

<al-form method="post">
<div class="alxform">
<alx-form name="entry_table_form" static />
</div>
</al-form>

To support editing the fields, you would change how it renders using:

<al-form method="post">
<div class="alxform">
<alx-form name="entry_table_form" errors />
</div>
</al-form>

When the user has made changes, your page_process method can pick up the changes using:

def page_process (ctx):
if ctx.req_equals(’save’):
ctx.locals.entry_table_form.merge (ctx.locals.entries)
save (ctx.locals.entries)

Paginating a table
To add pagination to a table, you need to specify a pagesize and the rest of the work is done for you.

<al-form method="post">
<div class="alxform">
<alx-form name="entry_table_form" errors pagesize="15" />
</div>
</al-form>

Currently, the simple paginator only emits “Prev” and “Next” links at the bottom of the table. It’s straightfor-
ward to change the style of those links by subclassing the TteratorTable class: pass in an instance of your
own custom subclass of PageSelectionDisplayBase asthe page_selection_display argument of
IteratorTable‘s constructor to render the page links differently.

The pagesize argument can also be specified when creating an IteratorTable instance. The argument
specified overrides any that are used in the <alx-form> tag.

Adding rows to a table

The developer is responsible for keeping the form’s idea of the number of rows in the table in sync with the rows
in the model.

def page_process(ctx):

if ctx.req_equals(’add_entry’):
entry = Entry("’", 77, ")
ctx.locals.entries.append (entry)
ctx.locals.entry_table_form.table.append(entry)

Note that the IteratorTable.append () method will call the row class with the model data that’s specified
in the constructor.

7.1. Albatross Forms Guide 71

Albatross Documentation, Release 1.40

Adding heterogenous rows to a table

If you were displaying a series of rows each of which was a product, at the end of the table it would be great
to display a total entry for all of the included lines. In this example, we use append_row () to append a pre-
formatted row (ie, an IteratorTableRow subclass instance) to the table.

Note that while this works when rendering a form, I don’t think it will work if the form is used for input.

class ProductTableRow (IteratorTableRow) :

def _ _init__ (self, product):
cols = (

Col ((TextField (' Code’, ’'code’),)),
(
(

Col ((TextField (' Name’, ’'name’),)),
Col ((FloatField (' Cost’, ’'cost’),),
html_attrs={’class’: 'number-right’}),
)
IteratorTableRow.__ _init_ (self, cols)

self.load (product)

class ProductTotalRow (IteratorTableRow) :

def _ init__ (self, products):
cols = (
Col ((Label ("),)),
Col ((Label (' Total”),)),
(

Col ((FloatField (' Total’, value=products.total_amount (), static=True),),
html_attrs={’class’: 'number—-right’}),
)
IteratorTableRow._ _init_ (self, cols)

class ProductTableForm(FieldsetForm) :

def _ init__ (self, products):

headers = Row ((
HeaderCol ((Label (' Product code’),)),
HeaderCol ((Label (' Product name’),)),
HeaderCol ((Label (" Cost’),),
html_attrs={’class’: 'number-right’}),

))
self.table = IteratorTable(’table’, headers, ProductTableRow, products,

html_attrs={’'width’: 7100%"})
self.table.append_row (ProductTotalRow (products))
buttons = Buttons ((

Button ('’ save’, ’Save’),
Button ('’ cancel’, ’Cancel’),

))
FieldsetForm._ _init_ (self, ’'Product table’, (self.table,),

buttons=buttons)

Deleting rows from a table
When deleting rows from a table, I normally put a check box next to each of the rows and include a “delete
selected” button so that the user can delete multiple rows at once.

In the table row constructor, I poke an is_selected value into the model object as a placeholder for the selected
check box. I feel like this is impolite but it works very effectively.

72 Chapter 7. Extensions

Albatross Documentation, Release 1.40

class EntryTableRow (IteratorTableRow) :

def _ _init__ (self, entry):

entry.is_selected = False # placeholder
cols = (
Col ((Checkbox (" Selected’, ’"is_selected’),)),
Col ((TextField (' Name’, ’'name’),)),
Col ((TextField (' Address’, ’"address’),)),
Col ((TextField (' Phone’, ’phone’),)),
)
IteratorTableRow.__init__ (self, cols)

self.load (entry)

When processing the request, I step through each list element in the model list in in sync with each child in the
table form and delete both of them when the checkbox is selected.

def page_process (ctx):

elif ctx.reg _equals(’delete_selected’):
for entry, entry_form child in zip(ctx.locals.entries,
ctx.locals.entry_table_form.table.children):
is_selected_field = entry_form_child.get_field(’Selected’)
if is_selected_field.get_value():
ctx.locals.entries.remove (entry)
ctx.locals.entry_table_form.table.remove (entry_form_child)

7.1.10 Querying fields before merge

Sometimes it can be really nice (read: improve the user experience) to be able to query some fields without
merging the value from the form back into an object. An example is when a user changes a input select field in a
form which has an attached value. In an app we have, a user has a select list of product numbers. We make the
app update the product’s name on the page when the product changes.

Note that we are treading on thin ice here: if the user has not entered a valid value for the field, when
get_value () tries to convert it to the appropriate type, it will raise an exception that will need to be dealt
with. It is (generally) safe to reference values from a TextFieldora SelectField though.

class ProductFieldsetForm (FieldsetForm) :
products_menu = product_factory.all_products_menu ()

def _ _init__ (self, product):
self.product_id = product.product_id
elements = (
Fieldset ((
SelectField(’Product code’, self.products_menu, ’'product_id’,
html_attrs={’onchange’: ’javascript:product_form.submit ()’}),
StaticField ('’ Product’, product.name),
)),
)
FieldsetForm._ _init_ (self, ’'Product selection’, elements)
self.load (product)

def update (self):
product_code_field = self.get_field(’Product code’)
if self.product_id != product_code_field.get_value() :
self.product_id = product_code_field.get_value ()
product = product_factory.product_with_product_id(self.product_id)

7.1. Albatross Forms Guide 73

Albatross Documentation, Release 1.40

product_field = self.get_field(’'Product’)
product_field.set_value (product.name)

The interesting part here is where we query the form for a specific field using its get__field () method.

We use the little bit of Javascript to make a change to the select list force an update to the page. That means having
to name the form when we render the page:

<al-form method="post" name="product_form">
<alx-form name="product_form_form" />
</al-form>

In the app itself, we use:

def page_enter (ctx) :
if not ctx.has_value (’'product_form’):
ctx.locals.product_form = ProductForm(ctx.locals.product)
ctx.add_session_vars (’'product_form”)

def page_process (ctx) :
ctx.locals.product_form.update () # update product name if product changed
if ctx.req_equals (’save’):

74 Chapter 7. Extensions

Albatross Documentation, Release 1.40

7.2 Albatross Forms Reference

FormOptions
‘ PrevNextPageSelectionDisplay H PageSelectionDisplayBase ‘
DefaultCSSStyles CSSStyles

FormValidationError
FieldValidationError

‘ IteratorTabIeRow‘ ‘ Table
‘ RadioField l ‘ FieldsetForm ‘% Form
SelectField w

‘ IntegerField ‘

PasswordField

InputField

‘ lteratorTable ‘

‘ Checkbox ‘ ‘ StaticField ‘

class Button (value, name, html_attrs=None)
Bases: albatross.ext.form.HTMLTag

An HTML submit button. All buttons in a Form should be collected in a single But tons instance which
is passed to the constructor of the Form.

*value is written on the face of the button when displayed.

ename is returned from the browser and can be tested in the application using ctx.req_equals(‘name’).

class Buttons (buttons, html_attrs=None)
Bases: albatross.ext.form.HTMLTag

A collection of But t on instances.

class Checkbox (name, attr, merge_obj=None, value=None, html_attrs=None, required=False, static=False)
Bases: albatross.ext.form.InputField

An HTML <input type="checkbox’’> control. self.value is always valid and the merged value is boolean.

class Col (children, html_attrs=None)
Bases: albatross.ext.form.HTMLTreeTag

HTML 7D tag.

class DataHTMLTag (attr, value=None, html_attrs=None)
Bases: albatross.ext.form.HTMLTag

7.2. Albatross Forms Reference 75

Albatross Documentation, Release 1.40

Output HTML for a value which which can be loaded from another object.
eattr is the name of the attribute in the model manipulated by 1oad () and merge ().

get_display_value (ctx, form)
Override this method to provide any required formatting or modification of the displayed value.

get_merge_value (s)
This should return the correctly typed object to update the field in the original object. Override this if
you are using a non-string value.

get_value ()
Return the converted value in this field

class DefaultCSSStyles ()
Bases: albatross.ext.form.CSSStyles

A collection of named CSS styles used in the HTML output of HTMLTag instances.
Each Form has a reference to a single instances of this class - field.styles.

Additional styles can be added to the default instance after the Form is created or an existing instance can
be specified when the Form is created using the styles argument.

The default style names are:
ebuttons
elegend
elabel
ofield
*field-error
*field-invalid,
evalue
evalue-static

class Field (name, attr, merge_obj=None, value=None, html_attrs=None, required=False, static=False)
Bases: albatross.ext.form.DataHTMLTag

Base class for input fields.
ename is the display name tyically shown to the left of the input control in the generated HTML.

*Specify merge_obj if this Field is loaded/merged from a model object other than the one used for
the form (this should usually be left as None).

Set required to True if a value must be entered for this Field (aFieldValidationError will
be raised on acallto validate () if the Field is empty).

oIf static is True the Fie1d is always displayed in static report style preventing user input.
Creating your own Field-subclasses
Several methods may be provided by custom subclasses as needed:

eget_display_value(self, ctx, form) should return the value stored in self.value to how you want it dis-
played in the browser. This is typically called during to_html and the value of self.value will be
replaced with this after that point.

eget_merge_value(self, s) Should convert the string version of the value passed in and return a value
of the appropriate type.

svalidate(self, form) Validate the string version of the value stored in the field. The method should just
return if it validates correctly; if not, raise FormvValidationError with an appropriate error
message.

Field‘s that are static or are members of a static form are not validated.

76 Chapter 7. Extensions

Albatross Documentation, Release 1.40

to_html(self, ctx, form) Generate custom HTML for this tag. Use:
form.write_content(ctx, ‘<your html here>")
to write your HTML to the output stream.

get_merge_value (value)
Override get_merge_value () where the value received from Albatross on a form submission
should be checked or modified before being stored.

input_name_for_form (form)
Create a unique string representation of the field to be used as an Albatross input name.

load (form_load_obj)
Load self.value from a named attribute in the model.

merge (form_merge_obj=None)
Merge value back into the model.

to_html (ctx, form)
Field subclasses must provide different output for static, enabled and disabled states and may output
validation error messages.

The default implementation of write_ static_html () and write_errors_html () should
suffice for most cases. A typical subclass will override write_form_html () to provide the HTML
ouput for the input controls required (text input, checkbox, etc.)

validate (form, s)
Subclasses should use this method to validate s after form submission. The method should raise a
FieldValidationError forinvalid values.

write_errors_html (ctx, form)
Write the HTML representation of the FieldvValidationError for this Field. Called during
HTML generation if this Fie1d raised an exception during Form validation.

write_form_html (ctx, form)
Write the interactive form control HTML representation of the field.

write_static_html (ctx, form)
Write a static HTML representation of the field. This method is called by to_html () if self.static is
True of if the whole Form is being statically rendered.

exception FieldValidationError
Bases: albatross.ext.form.FormError

Raised by Field subclasses if validate () fails.

class Fieldset (children, htmi_attrs=None)
Bases: albatross.ext.form.HTMLTreeTag

Container for a collection of F'ie1d instances.

Writes a table of fields. Note that the <fieldset> HTML tags are intentionally provided by the
FieldsetForm and not this class.

class FieldsetForm (legend, children, buttons=None, styles=None, html_attrs=None)
Bases: albatross.ext.form.Form

A Form subclass which wraps the HTML output in a <FIELDSET> tag.

class FloatField (name, attr; merge_obj=None, value=None, html_attrs=None, required=False,

static=Fualse)
Bases: albatross.ext.form.InputField

A TextField which validates and merges float values.

class Form (legend, children, buttons=None, styles=None, html_attrs=None)
Bases: albatross.ext.form.HTMLTreeTag

Encapsulates an HTML form and its input fields.

7.2. Albatross Forms Reference 77

Albatross Documentation, Release 1.40

elegend is displayed as the title of the form.
echildren is a list of HTMLTag subclasses including all the Form fields and markup fields for layout.
ebuttons is an optional But tons instance.

estyles is an optional CSSStyles instance. If not specified a DefaultCSSStyles instance is
created.

clear ()
Clear all field values, set form and all fields to valid state, clear disabled and set edit mode to
FORM_CREATE.

clear_errors ()
Clear errors and set all fields to valid.

load (load_obj)
Load field values from load_obj.

merge (merge_obj=None)
Merge all field values to merge_obj.

run (ctx, name, opts)
Called by alx-form tag handler to render the form. This method sets the correct internal state for
rendering, resets indentation and registers input fields before calling to_html ().

set_disabled (is_disabled)
Disable or enable data entry on all fields on this form.

to_html (ctx)
Render all fields and buttons as HTML. This is an internal method. To render the form use run ().

validate ()
Call validate () on each field. Sets self.valid to False and raises FormvValidationError if
any fields are invalid. Validation exceptions are stored in self.validation_errors and are cleared by
calling clear (), clear_errors () oronthe nextcallto validate ().

Static fields or fields of a static form are not validated.

write_content (ctx, content, indent=None)
A wrapper for ctx.write_content () which provides indentation to assist in generating human
readable HTML output.

Valid values for indent are:
*INDENT
*DEDENT
*POST_INDENT
*POST_DEDENT

All other values are ignored.

exception FormError
Bases: exceptions.Exception

Base class for all exceptions raised by the albatross.ext . form module.

class FormOptions (show_errors=False, static=False, pagesize=None)
Collect the attributes we're interested in from the alx-form tag.

exception FormValidationError
Bases: albatross.ext.form.FormError

Raised by Form subclasses validation fails for one or more fields.

eerrors is a dictionary of FieldvValidationError instances keyed by Field instance.

78 Chapter 7. Extensions

Albatross Documentation, Release 1.40

class HTMLTag (hrml_attrs=None)
Base class for any class which provides HTML output. Arbitrary HTML attributes can be specified as
html_attrs.

class HTMLTreeTag (children, html_attrs=None)
Bases: albatross.ext.form.HTMLTag

An HTMLTag with children.

class HeaderCol (children, html_attrs=None)
Bases: albatross.ext.form.HTMLTreeTag

HTML TH tag.

class InputField (name, attr, merge_obj=None, value=None, html_attrs=None, required=False,

static=False)
Bases: albatross.ext.form.Field

Base class for generating an HTML <input> tag. Requires that the instance has a self.rype which is the type
of the HTML input, ie, it will generate <input type=""(self.type)” ...>.

Subclasses are expected to maintain self.value as the correct type (eg, string (for text), int, datetime, etc)
and to do validation of the input as required. Self.value can also contain invalid strings if the user has partly
edited a field. Calling merge or get_value before validate has succeeded may raise an exception.

The conversion of the internal value to the display value is complicated because Albatross sets the value of
an empty field to None so that needs to be handled or all empty text fields in a form are converted to “None”.

class IntegerField (name, attr, merge_obj=None, value=None, html_attrs=None, required=False,

static=Fualse)
Bases: albatross.ext.form.InputField

A InputField which validates and merges integer values.

class IteratorTable (table_att, header_row, row_class, content_list, html_attrs=None, pagesize=None,
page_selection_display=<albatross.ext.form. PrevNextPageSelectionDisplay instance

at Oxa78e50c>)
Bases: albatross.ext.form.Field

Create an HTML table from a list of objects.

etable_attr is the name of the instance var in the class which creates this object. This is used when
directing Albatross to update the form values.

*header_row is a Row of HeaderCol instances (usually) which are used to put a header on the table.
An empty list or None will suppress any headers.

srow_class is a subclass of ITteratorTableRow. It is used to render each row in the table. It will be
used to contruct each row by being instantiated with each element of content_list in turn.

If you need pass the row class constructor some extra arguments from the table constructor, assign
them to instance variables and make the row_class a bound method to a method that marshalls the
arguments before calling the row constructor.

econtent_list is the content of the table to be displayed.

append (content_item)
Append a new row of data to the table

append_row (row)
Append an IteratorTableRow instance to the table

goto_page (page)
Jump to specified page. If page == -1, go to last page.

class IteratorTableRow (cols)
Bases: albatross.ext.form.Form

7.2. Albatross Forms Reference 79

Albatross Documentation, Release 1.40

When using an IteratorTable, the class that’s used to display each row must be a subclass of Itera-
torTableRow so that the rendering and validation is performed correctly. This is checked for in the
IteratorTable constructor.

Each row in a table is actually treated as a separate sub-Form. This allows Albatross to traverse the table
hierarchy when it’s updating the field values.

to_html (ctx)
generates the row’s content bracketed by <tr>/</tr>

class Label (value, html_attrs=None)
Bases: albatross.ext.form.HTMLTag

Simple displayed string value with no label.

class OptionsField (name, options, atty, merge_obj=None, value=0, html_attrs=None, static=False)
Bases: albatross.ext.form.Field

Base class to handle selection of a single value from a list of options, ie, for a select or radio list.

set_options (options)
change the options displayed by the select field.

class PageSelectionDisplayBase ()
Base class for displaying page selection

class PasswordField (name, attr, merge_obj=None, value=None, html_attrs=None, required=False,

static=False)
Bases: albatross.ext.form.TextField

A TextField with text input hidden by “*’

class RadioField (name, options, attr, merge_obj=None, value=0, html_attrs=None, static=False)
Bases: albatross.ext.form.OptionsField

Manage a radio list.
eoptions is a list of tuples of (value, display value)

When the field or the enclosing form is static, we just emit the selected option. (XXX I hope that’s the right
thing to do)

class Row (children, html_attrs=None)
Bases: albatross.ext.form.HTMLTreeTag

HTML 7R tag.

class SelectField (name, options, attr, merge_obj=None, value=0, html_attrs=None, static=False)
Bases: albatross.ext.form.OptionsField

Manage a drop down list of options.
eoptions is a list of tuples of (value, display value)

class StaticField (name, value, html_attrs=None)
Bases: albatross.ext.form.Field

String Fie1d which never accepts user input.

class Table (header_row, children, html_attrs=None)
Bases: albatross.ext.form.HTMLTreeTag

HTML TABLE tag.

class TextField (name, attr, merge_obj=None, value=None, html_attrs=None, required=False, static=False)
Bases: albatross.ext.form.InputField

HTML <input type="text”> tag. Merged data is a string. If self.required is True validate () will raise a
FieldvalidationError if the input field is empty. No other validation or conversion is performed.

80 Chapter 7. Extensions

Albatross Documentation, Release 1.40

get_merge_value (value)
Empty input field is submitted as None - convert to empty string.

class Textarea (name, attr, merge_obj=None, value=None, html_attrs=None, required=False, static=False)
Bases: albatross.ext.form.TextField

An HTML TEXTAREA tag. Validate and merge rules are the same as TextField.

7.2. Albatross Forms Reference 81

Albatross Documentation, Release 1.40

82 Chapter 7. Extensions

CHAPTER
EIGHT

TEMPLATES REFERENCE

Albatross provides an HTML templating system that applications use to provide the presentation layer.

The template parser uses regular expressions to locate all of the template tags. All text that is not recognised as an
Albatross tag or associated trailing whitespace is passed unchanged through the parser. In practice this means that
you can use the templating system for non-HTML files.

The parser regular expressions recognise all tags names that are prefixed by either “al-” or “alx-“. All standard
Albatross tags use the “al-“. The “alx-” prefix is provided to ensure extension tag names do not clash with standard
names.

For Albatross tags that enclose content you can use the XML empty tag syntax to indicate that there is no content.
The parser transforms all tag and attribute names to lowercase and allows attributes on multiple lines. For example
the following two constructs are identical.

<al-for iter="i" expr="seq" pagesize="10" prepare>
</al-for>

<al-for iter="i"
expr="seq"
pagesize="10"
prepare/>

The parser handles attribute values enclosed with either single or double quotes. The enclosing quote character can
be used in the attribute string if it is escaped by a backslash (“$\”). Attribute values can be broken over multiple
lines.

8.1 Fake Application Harness

Some of the explanatory examples in this chapter require application functionality. The following fake application
is used as an execution harness to drive the interactive examples.

import sys
import albatross
class Request:

def get_uri(self):
return ’'http://www.com/fakeapp.py’

def write_header (self, name, value):
pass

def end_headers (self) :
pass

83

Albatross Documentation, Release 1.40

def write_content (self, data):
sys.stdout.write (data)

app = albatross.SimpleApp (base_url=’' fakeapp.py’,
template_path=".",
start_page=’start’,
secret='secret’)

ctx = albatross.SessionAppContext (app)
ctx.set_request (Request ())

8.2 Enhanced HTML Tags

Tags in this section are used in place of standard HTML tags to access values from the execution context.

All attributes that are not recognised by Albatross are passed without modification to the generated HTML.

8.2.1 <al-form>

Albatross browser request merging depends upon the functionality provided by the <al-form> tag. If you do
no use this tag in applications then the standard request merging will not work.

”»”

The tag will automatically generate the HTML <form> action (action=""...

type="..." attribute) attributes as required.

attribute) and enctype (enc-

If you are using an execution context that inherits from the NameRecorderMixin (nearly all do — see
chapter Prepackaged Application and Execution Context Classes) then the execution context will raise a
ApplicationError exception if multiple instances of some types of input tag with the same name are added
to a form. The 11ist attribute of the <al-input > tag is used indicate that multiple instances are intentional.

action="..." attribute

If you do not supply an action attribute the tag will generate one with based on the value returned by the
current_url () method of the execution context.

>>> import albatross

>>> from fakeapp import ctx

>>> albatross.Template(ctx, ’<magic>", ’’’
<al-form whitespace>
<al-input type="text" name="name" whitespace>
</al-form whitespace>

<al-form action="http://there.com/" whitespace>
<al-input type="text" name="name" whitespace>
</al-form whitespace>
... 7)Yy .to_html (ctx)
>>> ctx.flush_content ()
<form action="/fakeapp.py">
<input type="text" name="name" />
<div><input type="hidden" name="__albform__" value="eJzbIimXFmseCLDkMLy6Hzfx1IN6dK5rJwAINt IWMOS
" /></div>
</form>

<form action="http://there.com/">
<input type="text" name="name" />
<div><input type="hidden" name="__albform__" value="eJzbIimXFmseCLDkMLy6Hzfx1IN6dK5rJwAINt IWMOS

84 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

"o/></div>
</form>

Note that the generated act ion attribute is relative to the document root.

enctype="..." attribute

If you include any file input fields then the open tag will automatically supply an
enctype="multipart/form-data" attribute.

>>> import albatross
>>> from fakeapp import ctx
>>> albatross.Template (ctx, ’<magic>", ’’’
<al-form whitespace>
<al-input type="text" name="name" whitespace>
<al-input type="file" name="data" whitespace>
</al-form whitespace>
... 77 sto_html (ctx)
>>> ctx.flush_content ()
<form action="/fakeapp.py" enctype="multipart/form-data">
<input type="text" name="name" />
<input type="file" name="data" />
<div><input type="hidden" name="__albform__" value="eJzJjECjXXD/Z7bjIvorcXnm3jl0Tnf83MNUWMmMJE <
" /></div>
</form>

8.2.2 <al-input>

Albatross browser request merging depends upon the functionality provided by the <al-input> tag. If you do
no use this tag in applications then the standard request merging will not work.

”»

In the most common usage a value (value=".." attribute) attribute is generated by evaluating the name
(name="..." attribute) attribute in the execution context. This can be overridden by supplying a value

(value="..." attribute) or expr (expr="..." attribute) attribute.

There are a number of attributes that automatically generate the name attribute.

When merging browser requests the application object places the browser supplied value back into the execution
context value referenced by the name attribute. The application request merging will not merge variable names
prefixed by underscore. Use this to protect application values from browser modification.

alias="..." attribute

This attribute is ignored is any of the following attributes are present; prevpage, nextpage (prevpage="..."
and nextpage="..." attributes), treefold, treeselect,or treeellipsis (treeselect="...", treefold="..."
and treeellipsis="..." attributes).

The value of the alias attribute is passed to the make_alias () method of the execution context. The return
value is then used as the generated name (name="..." attribute) attribute.

I

The execution context make_alias () method splits the alias attribute at the last . and resolves the left
hand side to an object reference. The albatross_alias () method is then called on that object and the result
is combined with the ‘.’ and the right hand side of the of the alias attribute to produce the generated name
attribute. The resolved object is entered in the the local namespace and the session using the name returned by the

albatross_alias () method.

The template samples/tree/treel.html contains an example of this method for generating a name at-
tribute.

8.2. Enhanced HTML Tags 85

Albatross Documentation, Release 1.40

<al-tree iter="n" expr="tree">
<al-for iter="c" expr="range (n.depth())">
<al-value expr="n.line(c.value())" lookup="indent">
</al-for>
—<al-input type="checkbox" alias="n.value () .selected">
<al-value expr="n.value () .name" whitespace="newline">
</al-tree>

Note that each node in the tree has a checkbox that controls whether or not the node is selected. When processing
the alias attribute the toolkit isolates the left hand side (n.value ()) which happens to be the current tree
node of TreeIterator n. To generate the alias the albatross_alias () method of the current node is
called. In samples/tree/treel.py the implementation of that method looks like:

class Node:
def albatross_alias(self):
return 'node?d’ % self.node_num

When the template is executed a unique name is generated for each checkbox. The exact HTML produced by the
above fragment from the sample looks like this:

—<input type="checkbox" name="nodel2.selected" value="on">a
| -<input type="checkbox" name="node2.selected" value="on">a
| |-<input type="checkbox" name="node0O.selected" value="on">a
| \-<input type="checkbox" name="nodel.selected" value="on">b
\-<input type="checkbox" name="nodell.selected" value="on">b
| -<input type="checkbox" name="nodeb6.selected" value="on">a
| \-<input type="checkbox" name="node5.selected" value="on">a
| | -<input type="checkbox" name="node3.selected" value="on">a
| \-<input type="checkbox" name="node4d.selected" value="on">b
| -<input type="checkbox" name="node7.selected" value="on">b
\-<input type="checkbox" name="nodel0.selected" value="on">c
| -<input type="checkbox" name="node8.selected" value="on">a
\-<input type="checkbox" name="node9.selected" value="on">b

The alias handling uses the fact that all Python objects are stored by reference. It obtains a reference to an
existing object by resolving an expression and stores that reference under a new name. Since both the original
expression and the new name are the same reference, the toolkit can modify the object referenced by the original
expression by using the new name.

Looking further into the samples/tree/treel.py code you will note that the tree being iterated is generated
once and placed into the session. This ensures that the alias names generated always contain references to the
nodes in the tree. If the tree was not entered into the session but was generated from scratch every request, the
nodes referenced in the alias names would not be the same nodes as those in the tree so all input would be lost.

checked attribute

This attribute is generated in radio and checkbox input field types if the generated value (value="..." at-
tribute) attribute matches the comparison value from valueexpr (valueexpr="..." attribute) (or the literal ’ on’

for the checkbox input field type).

Refer to the documentation for individual input types for more details.
expr="..." attribute
For text, password, submit, reset, hidden, and button input field types the expression in the expr

attribute is evaluated and the result is used to generate the value (value="..." attribute) attribute. If the result is
None then no value attribute will be written.

86 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

For radio and checkbox input field types the expression in the expr attribute is evaluated and the result
is compared with the generated value attribute to determine whether or not the checked (checked attribute)
attribute should be written.

Refer to the documentation for individual input types for more details.

list attribute

If you are using an execution context that inherits from the NameRecorderMixin (nearly all do — see
chapter Prepackaged Application and Execution Context Classes) then the execution context will raise a
ApplicationError exception if multiple instances of some types of input tag with the same name are added
to a form. The 11ist attribute of the <al-input> tag is used indicate that multiple instances are intentional.

The presence of the list attribute on an <al-input> tag makes the request merging in the
NameRecorderMixin class place any browser request values for the field into a list (field not present is repre-
sented by the empty list).

The attribute must not be used for input field types radio, submit, and image. The attribute is ignored for the
file input field type.

name="..." attribute

When determining the generated name attribute the tag looks for a number of attributes. Any supplied name
attribute will be ignored if any of the following attributes are present; prevpage, nextpage (prevpage="..."
and nextpage="..." attributes), treefold, treeselect, treeellipsis (treeselect="...", treefold="..."

and treeellipsis="..." attributes), alias (alias="..." attribute), or nameexpr (nameexpr="..." attribute).

All of the attributes that automatically generate names and are looked up in the above sequence. The first of those
attributes found will be used to determine the name used in the tag.

nameexpr="..." attribute

s

This attribute is ignored if any of the following attributes are present; prevpage, nextpage (prevpage=""...
and nextpage="..." attributes), treefold, treeselect, treeellipsis (treeselect="...", treefold=""...
" attributes), or alias (:ref :tag-input-alias).

and treeellipsis="...
The expression in the value of the nameexpr attribute is evaluated to determine the generated name (name="...
attribute) attribute.

One shortcoming of the alias attribute is that you can only perform input on object attributes. The nameexpr
enables you to perform input on list elements.

>>> import albatross
>>> ctx = albatross.SimpleContext (’.”)
>>> ctx.locals.names = [’John’, ’'Terry’, ’"Eric’]
>>> albatross.Template(ctx, ’<magic>", ’’’
<al-for iter="i" expr="range (len (names)) ">
<al-input nameexpr="'names [17 .value ()" whitespace>
</al-for>
... "7y . to_html (ctx)
>>> ctx.flush_content ()

<input name="names[0]" value="John" />
<input name="names[1l]" value="Terry" />
<input name="names[2]" value="Eric" />

When the browser request is merged into the execution context the names elements of the names list will be
replaced.

8.2. Enhanced HTML Tags 87

Albatross Documentation, Release 1.40

node="..." attribute

The node attribute is used in conjunction with the treeselect, treefold and treeellipsis (freese-
lect="...", treefold="... " attributes) attributes. It is ignored otherwise.

>

" and treeellipsis=""...

When this attribute is present the node identified by evaluating the expression in the attribute value will be used
when generating the name attribute.

The name (name="..." attribute) attribute is generated as follows:
>>> import albatross

>>> ctx = albatross.SimpleContext (’.")
>>> class Node:

def _ init_ (self, ino):
self.ino = ino

def albatross_alias(self):
return 'ino?%d’ % self.ino

>>> ctx.locals.node = Node (81489)
>>> albatross.Template (ctx, '<magic>", ’'’

<al-input type="image" treeselect="n" node="node" src="/icons/face.gif" border="0"

"7y to_html (ctx)
>>> ctx.flush_content ()

<input type="image" src="/icons/face.gif" border="0" name="treeselect,n,ino81489" />

Refer to the documentation for t reeselect, treefoldand treeellipsis (treeselect="...", treefold="..."
and treeellipsis="..." attributes) attributes for more information.

noescape attribute

The noescape attribute can be used in conjunction with the text, password, submit, reset, hidden,
and button input fields, it is ignored otherwise.

When this attribute is present the value (value="..." attribute) attribute will not be escaped.

>>> import albatross

>>> ctx = albatross.SimpleContext (’.")

>>> ctx.locals.oops = ’&<>"\""

>>> albatross.Template (ctx, '<magic>’, "'’
<al-input type="text" name="oops" noescape whitespace>
777y to_html (ctx)

>>> ctx.flush_content ()

<input type="text" name="oops" value="&<>"'" />

prevpage="..." and nextpage="..." attributes
The prevpage and nextpage attributes respectively select the previous and next pages of an <al-for>
ListIterator (Listlterator Objects).
An attribute value must be supplied that specifies the name of the iterator.
The name (name="..." attribute) attribute is generated as follows:
>>> import albatross

>>> ctx = albatross.SimpleContext (’.”)
>>> albatross.Template (ctx, '<magic>", "'’

<al-input type="image" nextpage="i" src="/icons/right.gif" border="0" whitespace>

777) .to_html (ctx)
>>> ctx.flush_content ()
<input type="image" src="/icons/right.gif" border="0" name="nextpage,i" />

88 Chapter 8. Templates Reference

whites

Albatross Documentation, Release 1.40

When merging the browser request the NamespaceMixin.set_value () (ref :mixin-namespace) method
looks for field names that contain commas. These names are split into operation, iterator, and optional value then
the set_backdoor () method of the identified iterator is invoked.

During request merging the above example will execute code equivalent to the following.

ctx.locals.i.set_backdoor (' nextpage’, ’'nextpage,i’)

treeselect="...", treefold="..." and treeellipsis="..." attributes

The treeselect, treefold, and treeellipsis attributes respectively select, open/close, or ex-
pand the ellipsis of an <al-tree> node via a LazyTreelterator (LagzyTreelterator Objects) or
EllipsisTreelterator (EllipsisTreelterator Objects) iterator.

These attributes are ignored if any of the following attributes are present; prevpage, or nextpage (pre-
vpage="..." and nextpage="..." attributes).

>

An attribute value must be supplied that specifies the name of the LazyTreeIterator iterator.

’

The name (name="..."” attribute) attribute is generated as follows:

>>> import albatross
>>> ctx = albatross.SimpleContext (’.")
>>> class Node:
def _ init_ (self, ino):
self.ino = ino
def albatross_alias(self):
return ’'ino?%d’ % self.ino

>>> ctx.locals.tree = Node (81489)

>>> albatross.Template (ctx, ’<magic>", ’’’
<al-tree expr="tree" iter="n">
<al-input type="image" treeselect="n"
</al-tree>

..o PPy Lto_html (ctx)

>>> ctx.flush_content ()

<input type="image" src="/icons/face.gif" border="0" name="treeselect,n,ino81489" />

src="/icons/face.gif" border="0" whitespace>

When merging the browser request the NamespaceMixin.set_value () (ref :mixin-namespace) method
looks for field names that contain commas. These names are split into operation, iterator, and optional value then
the set_backdoor () method of the identified iterator is invoked.

During request merging the above example will execute code equivalent to the following.
ctx.locals.n.set_backdoor ('treeselect’, "ino81489’, ’'treeselect,n,ino81489")

The “ino81489” string is generated by calling the albatross_alias () method for the tree node.

If the node(node="..." attribute) attribute is not specified, the node referenced by the current value of the iterator
will be used to determine the alias.

value="..." attribute

When determining the generated value attribute the tag looks for a number of attributes. Any supplied value at-
tribute will be ignored if either expr (expr="..." attribute) attributes
(depending upon input type) present.

P

" attribute) or valueexpr (valueexpr=""...

If no expr, valueexpr, or value attribute is present then the value identified by the generated name
(name="..." attribute) attribute will be taken from the local namespace. If this value is None then no value
attribute will be written. The name used to look into the local namespace is the result of evaluating all name
related attributes.

8.2. Enhanced HTML Tags 89

Albatross Documentation, Release 1.40

For input field types radio and checkbox the valueexpr attribute if present takes priority over and specified
value attribute.

Refer to the documentation for individual input types for more details.

valueexpr="..." attribute

This attribute is used to generate a value (value="..." attribute) attribute for radio and checkbox input field
types. It is ignored for in all other cases.

Refer to the documentation for individual input types for more details.

type="..." attribute (text, password, submit, reset, hidden, button)

The tag determines the generated name (name="..." attribute) from the name related attributes.

”

To determine the generated value (value="..." attribute) attribute the tag first looks for an expr (expr=""...
attribute) attribute, then a value attribute, and then if that fails it looks up the generated name in the execution
context.

If the generated name contains a non-empty value it will be written as the name attribute. If the generated
value is not None it will be escaped and written as the value attribute. Escaping values makes all &, <, >, and
" characters safe.

For example:

>>> import albatross

>>> class Ctx(albatross.SimpleContext) :

def input_add(self, =xargs):
print args

>>> ctx = Ctx(".")

>>> ctx.locals.zero = 0

>>> ctx.locals.zerostr = "0’

>>> ctx.locals.width = 5

>>> ctx.locals.height = 7

>>> ctx.locals.secret = 42

>>> ctx.locals.other_secret = "<"g’

>>> albatross.Template(ctx, '<magic>’, "'’

<al-input
<al-input
<al-input
<al-input
<al-input
<al-input
<al-input
<al-input

!I!)

("text’,
("text’,
("text’,
("text’,
(" password’,
(" submit’,
("hidden’,
(" hidden’,

’login’,
’secret’,
’other_secret’,

name="zero" whitespace>
name="zerostr" whitespace>
name="width" whitespace>
name="area" expr="width % height" whitespace>
type="password" name="passwd" whitespace>
type="submit" name="login" value="Login" whitespace>
type="hidden"
type="hidden"

_n

name=
name="other_secret" whitespace>

secret" whitespace>

.to_html (ctx)
"zero’,
"zerostr’,
"width’,
"area’,

0, False)

"0’, False)

5, False)

35, False)
passwd’, None, False)
"Login’, False)
42, False)

r<"g’, False)

>>> ctx.flush_content ()

<input
<input
<input
<input
<input

name="

name="zero"
name="zerostr"
width"
name="area"

type="password"

/>
value="0"
value="5" />
value="35" />
name="passwd"

value="0"

/>

/>

90

Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

<input type="submit" name="login" value="Login" />
<input type="hidden" name="secret" value="42" />
<input type="hidden" name="other_secret" value="< " &" />

After writing all tag attributes the execution context input_add () method is called with the following argu-
ments; input field type (' text’, ' password, ' submit, ' reset, ' hidden, or ' button’), the generated
name, the generated value, and a flag indicating whether or not the 11 st (/ist attribute) attribute was present.

Application code handling browser requests typically determines the submit input pressed by the user via the
execution context req_equals () method. The req_equals () method simply tests that the named input is
present in the browser request and contains a non-empty value.

For example:

def page_process(ctx):
if ctx.reqg_equals(’login’):
user = process_login(ctx.locals.username, ctx.locals.passwd)
if user:
ctx.locals._user = user
ctx.add_session_vars (’_user’)
ctx.set_page (' home’)

type="..." attribute (radio)

The tag determines the generated name (name="..." attribute) from the name related attributes. Then an internal
comparison value is determined by evaluating the expr (expr="..." attribute) attribute if it is present, or by
looking up the generated name in the execution context.

If the comparison value equals the generated value (value="..." attribute) attribute then the checked (checked
attribute) attribute is written. Both values are converted to string before being compared.

y

To determine the generated value attribute the tag first looks for a valueexpr (valueexpr=""...
attribute, then a value attribute.

attribute)

For example:

>>> import albatross
>>> class Ctx(albatross.SimpleContext) :
def input_add(self, =xargs):
print args

>>> ctx = Ctx(’.")

>>> ctx.locals.swallow = "African’

>>> albatross.Template (ctx, '<magic>',
<al-input type="radio" name="swallow" value="African" whitespace>
<al-input type="radio" name="swallow" value="European" whitespace>

... "77) cto_html (ctx)

(" radio’, ’'swallow’, ’'African’, False)

("radio’, ’swallow’, ’European’, False)

>>> ctx.flush_content ()

<input type="radio" name="swallow" value="African" checked />

<input type="radio" name="swallow" value="European" />

rrr

The expr attribute can be used to generate the internal comparison value. This is then compared with the value
attribute to control the state of the checked attribute.

For example:
>>> import albatross

>>> class Ctx(albatross.SimpleContext) :
def input_add(self, =xargs):

8.2. Enhanced HTML Tags 91

Albatross Documentation, Release 1.40

print args

>>> ctx = Ctx(".")

>>> ctx.locals.swallows = ['African’, ’'European’]

>>> ctx.locals.num = 0

>>> albatross.Template (ctx, ’<magic>", 7’7’
<al-input type="radio" name="swallow" expr="swallows[num]" value="African" whitespace>
<al-input type="radio" name="swallow" expr="swallows[num]" value="European" whitespace>

... 77) ito_html (ctx)

(" radio’, ’'swallow’, ’'African’, False)

("radio’, ’swallow’, ’European’, False)

>>> ctx.flush_content ()

<input type="radio" name="swallow" value="African" checked />
<input type="radio" name="swallow" value="European" />

The valueexpr attribute can be used to dynamically generate the value attribute.

For example:

>>> import albatross
>>> class Ctx(albatross.SimpleContext) :
def input_add(self, =*args):
print args

>>> ctx = Ctx(".")
>>> ctx.locals.swallows = ['African’, ’'European’]
>>> ctx.locals.num = 0
>>> albatross.Template (ctx, '<magic>’, '’
<al-for iter="s" expr="swallows">
<al-input type="radio" name="swallow" expr="swallows[num]" valueexpr="s.value ()" whitesps
</al-for>
... 77y to_html (ctx)
("radio’, ’"swallow’, ’'African’, False)
("radio’, ’swallow’, ’European’, False)
>>> ctx.flush_content ()
<input type="radio" name="swallow" value="African" checked />
<input type="radio" name="swallow" value="European" />

After writing all tag attributes the execution context input_add () method is called with the arguments; input
field type (* radio’), the generated name, the generated value, and a flag indicating whether or not the 1ist
(list attribute) attribute was present.

type="..." attribute (checkbox)
The tag determines the generated name (name="..." attribute) from the name related attributes. Then an internal
comparison value is determined by evaluating the expr (expr="..." attribute) attribute if it is present, or by

looking up the generated name in the execution context.

If the comparison value equals the generated value (value="..." attribute) attribute then the checked (checked
attribute) attribute is written. Both values are converted to string before being compared.

If the internal comparison value is either a list or tuple the checked attribute is written if the generated value
attribute is present in the list/tuple.

”»

To determine the generated value attribute the tag first looks for a valueexpr (valueexpr=""...
attribute, then a value attribute, and then if that fails it defaults to the value on”’ .

attribute)

For example:

>>> import albatross
>>> class Ctx(albatross.SimpleContext) :
def input_add(self, =*args):

92 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

print args

>>> ctx = Ctx(".")

>>> ctx.locals.menu = [’spam’, 'eggs’]

>>> ctx.locals.eric = "half’

>>> ctx.locals.parrot = ’‘on’

>>> ctx.locals.halibut = "off’

>>> albatross.Template(ctx, ’<magic>", ’’’
<al-input type="checkbox" name="menu" value="spam" whitespace>
<al-input type="checkbox" name="menu" value="eggs" whitespace>
<al-input type="checkbox" name="menu" value="bacon" whitespace>
<al-input type="checkbox" name="eric" value="half" whitespace>
<al-input type="checkbox" name="parrot" whitespace>
<al-input type="checkbox" name="halibut" whitespace>

... "77) cto_html (ctx)

(’ checkbox’, ’"menu’, ’'spam’, False)

(" checkbox’, ’"menu’, ’'eggs’, False)

(" checkbox’, ’"menu’, ’"bacon’, False)

(! checkbox’, ’"eric’, '"half’, False)

(" checkbox’, ’"parrot’, ’'on’, False)

(" checkbox’, ’"halibut’, ’'on’, False)

>>> ctx.flush_content ()

<input type="checkbox" name="menu" value="spam" checked />

<input type="checkbox" name="menu" value="eggs" checked />

<input type="checkbox" name="menu" value="bacon" />

<input type="checkbox" name="eric" value="half" checked />

<input type="checkbox" name="parrot" value="on" checked />

<input type="checkbox" name="halibut" value="on" />

After writing all tag attributes the execution context input_add () method is called with the arguments; input
field type (* checkbox”’), the generated name, the generated value, and a flag indicating whether or not the
1list (list attribute) attribute was present.

type="..." attribute (image)

The tag determines the generated name (name="..." attribute) from the name related attributes.

For example:

>>> import albatross
>>> class Ctx(albatross.SimpleContext) :
def input_add(self, =*args):
print args

>>> ctx = Ctx(".")

>>> albatross.Template (ctx, ’<magic>", 7’7’
<al-input type="image" nextpage="m" src="/icons/right.gif" whitespace>
777y to_html (ctx)

(" image’, ’'nextpage,m’, None, False)

>>> ctx.flush_content ()

<input type="image" src="/icons/right.gif" name="nextpage,m" />

After writing all tag attributes the execution context input_add () method is called with the arguments; input
field type (* image’), the generated name, None, and a flag indicating whether or not the 1ist (:ref :tag-input-
list) attribute was present.

When a browser submits input to an image input it sends an x and y value for the field. These are saved as
attributes of the field.

For example, if an image input named map was clicked by the user, then the code to detect and process the input
would look something like this:

8.2. Enhanced HTML Tags 93

Albatross Documentation, Release 1.40

def page_process(ctx):
if ctx.reg _equals ('map’):
map_clicked_at (ctx.locals.map.x, ctx.locals.map.y)

type="..." attribute (file)

”»

The tag determines the generated name (name="..." attribute) from the name related attributes.

If you are using an execution context that inherits from the NameRecorderMixin (RecorderMixin Classes)
then using this input field type will automatically cause the enclosing <al-form> (<al-form>) tag to include an
enctype="multipart/form-data" (enctype="..." attribute) attribute.

For example:

>>> import albatross
>>> class Ctx(albatross.SimpleContext) :
def input_add(self, =xargs):
print args

>>> ctx = Ctx(".")

>>> albatross.Template(ctx, ’<magic>", ’’’
<al-input type="file" name="resume" whitespace>

... 77y . to_html (ctx)

(" file’, ’'resume’, None, False)

>>> ctx.flush_content ()

<input type="file" name="resume" />

After writing all tag attributes the execution context input_add () method is called with the arguments; input
field type (£ile’), the generated name, None, and a flag indicating whether or not the 1ist (:ref :tag-input-
list) attribute was present.

The request merging allows the user to submit more than one file in a £i1le input field. To simplify application
code the Request always returns a list of FileField objects for £ile inputs.

Application code to process £1ile inputs typically looks like the following:

def page_process(ctx):
if ctx.reg_equals (/' resume’):
for r in ctx.locals.resume:
if r.filename:
save_uploaded_resume (r.filename, r.file.read())

8.2.3 <al-select>

Albatross browser request merging depends upon the functionality provided by the <al-select> tag. If you
do no use this tag in applications then the standard request merging will not work.

»

To determine the name (name="..." attribute) attribute in the generated tag a number of attributes are used. The
generated name is evaluated in the execution context to determine an internal compare value.

The compare value is used to control which option tags are generated with the selected (selected attribute)
attribute. <select> tags in multi- select mode are supported by list or tuple compare values.

The <al-select> tag can automatically generate the list of enclosed <opt ion> tags using the opt ionexpr
(optionexpr="..." attribute) attribute, or can work with enclosed <al—-option> (<al-option>) tags.

94 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

alias="..." attribute

The value of the alias attribute is passed to the make_alias () method of the execution context. The return

value is then used as the generated name (name="..." attribute) attribute.

[

The execution context make_alias () method splits the alias attribute at the last *” and resolves the left
hand side to an object reference. The albatross_alias () method is then called on that object and the result
is combined with the ‘. and the right hand side of the of the alias attribute to produce the generated name
attribute. The resolved object is entered in the the local namespace and the session using the name returned by the

albatross_alias () method.

>

Refer to the documentation of the alias attribute of the <al-input> tag (alias="...
of the mechanism described above.

" attribute) for an example

list attribute

If you are using an execution context that inherits from the NameRecorderMixin (nearly all do — see
chapter Prepackaged Application and Execution Context Classes) then the execution context will raise a
ApplicationError exception if multiple instances of a non-multi-select <al-select> tag with the same
name are added to a form. The 11ist attribute is used indicate that multiple instances are intentional.

The presence of the list attribute on an <al-select> tag makes the request merging in the
NameRecorderMixin class place any browser request values for the field into a list (field not present is repre-
sented by the empty list).

multiple attribute

For the purposes of the NameRecorderMixin class, this attribute performs the same role as the 1ist (list
attribute) attribute. It tells the browser request merging to place all input values into a list (field not present is
represented by the empty list).

name=". .. " attribute

When determining the generated name attribute the tag looks for a number of attributes. Any supplied name
attribute will be ignored if either the alias (alias="..." attribute) or nameexpr (nameexpr=".." attribute)
attributes are present.

”»

nameexpr="..." attribute

This attribute is ignored if the alias (alias="..." attribute) attribute is present.

» o

The expression in the value of the nameexpr attribute is evaluated to determine the generated name (name="...
attribute) attribute.

One shortcoming of the alias attribute is that you can only perform input on object attributes. The nameexpr
enables you to perform input on list elements.

”»

Refer to the documentation of the nameexpr attribute of the <al-input> tag (nameexpr=""...
an example.

attribute) for

noescape attribute

>

The noescape attribute is used with the optionexpr (optionexpr="...
ing of each option value returned by the expression.

" attribute) attribute to suppress escap-

8.2. Enhanced HTML Tags 95

Albatross Documentation, Release 1.40

optionexpr="..." attribute
If this attribute is present the expression in the attribute value is evaluated to determine a sequence of option values.
One <option> tag is generated for each item in the sequence.

When this attribute is not present all of the directly enclosed <al-option> (<al-option>) tags are processed to
generate the enclosed <option> tags.

If an item in the optionexpr sequence is not a tuple, it is converted to string and then compared with the
comparison value derived from the name (name="..." attribute) attribute.

To support multiple selected <opt ion> tags the comparison value must be either a list or tuple.
For example:

>>> import albatross
>>> ctx = albatross.SimpleContext (’.")

>>> ctx.locals.sell = 3

>>> ctx.locals.sel2 = (2,3)

>>> albatross.Template(ctx, ’<magic>", ’’’
<al-select name="sell" optionexpr="range(5)" whitespace/>
<al-select name="sel2" optionexpr="range (5)" multiple whitespace/>

... 77) cto_html (ctx)

>>> ctx.flush_content ()

<select name="sell"><option>0</option>
<option>1</option>

<option>2</option>

<option selected>3</option>
<option>4</option>

</select>

<select multiple name="sel2"><option>0</option>
<option>1</option>

<option selected>2</option>

<option selected>3</option>
<option>4</option>

</select>

If an item in the opt ionexpr sequence is a tuple it must contain two values. The first value is used to specify
the value attribute of the generated <opt ion> tag and the second value provides the <opt ion> tag content.

For example:

>>> import albatross
>>> ctx = albatross.SimpleContext (’.")
>>> ctx.locals.menu = [(1, ’"Spam’), (2, "Eggs’), (3, ’"Bacon’)]
>>> ctx.locals.sel = 1
>>> albatross.Template(ctx, ’<magic>", ’’’
<al-select name="sel" optionexpr="menu" whitespace/>
... 77) cto_html (ctx)
>>> ctx.flush_content ()
<select name="sel"><option selected value="1">Spam</option>
<option value="2">Eggs</option>
<option value="3">Bacon</option>
</select>

All values generated by the opt ionexpr method are escaped to make all &, <, >, and " characters safe.

8.2.4 <al-option>

Unless explicitly overridden, the selected attribute is controlled by the comparison of the value of the enclosing
<al-select> (<al-select>) tag with the evaluated value of the <al-option> tag.

96 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

’

The value of the <al-option> tagis specified either by evaluating the valueexpr (valueexpr=".." attribute)
attribute, or the value (:ref :tag-option-value) attribute, or if neither attribute is present, by the content enclosed
by the <al-option> tag. The enclosed content of the tag is evaluated before it is compared. This allows the
content to be generated using other Albatross tags.

Albatross browser request merging depends upon the functionality provided by the <al-option> tag. If you
do no use this tag in applications then the standard request merging will not work.

For example — this shows how the <al-option> content is evaluated before it is compared with the
<al-select> value:

>>> import albatross

>>> ctx = albatross.SimpleContext (’.")

>>> ctx.locals.opt = ’spam’

>>> ctx.locals.sel = "spam’

>>> albatross.Template(ctx, ’<magic>", ’’’
<al-select name="sel">
<al-option><al-value expr="opt"></al-option>
<al-option>eggs</al-option>
</al-select whitespace>

..o Py sto_html (ctx)

>>> ctx.flush_content ()

<select name="sel"><option selected>spam</option><option>eggs</option></select>

selected attribute

The selected attribute overrides the value comparison logic. When the selectedbool form is used, this
allows the selected flag to be controlled via arbitrary logic.

value="..." attribute

Use the value attribute to specify a value to be compared with the comparison value of the enclosing
<al-select> (<al-select>) tag.

>>> import albatross
>>> ctx = albatross.SimpleContext (’.”)
>>> ctx.locals.opt = 3
>>> ctx.locals.sel = ['spam’, 'eggs’]
>>> albatross.Template(ctx, ’<magic>", ’’’
<al-select name="sel" multiple>
<al-option value="spam">Spam <al-value expr="opt"> times
</al-option>
<al-option>eggs</al-option>
<al-option>bacon</al-option>
</al-select whitespace>
.o)y sto_html (ctx)
>>> ctx.flush_content ()
<select multiple name="sel"><option value="spam" selected>Spam 3 times
</option><option selected>eggs</option><option>bacon</option></select>

valueexpr="..." attribute
Use the valueexpr attribute to specify an expression to be evaluated to derive the value to be compared with
the comparison value of the enclosing <al-select> (<al-select>) tag.

If the valueexpr attribute evaluates to a 2-tuple, the first item becomes the value and the second becomes the
label.

8.2. Enhanced HTML Tags 97

Albatross Documentation, Release 1.40

>>> import albatross
>>> ctx = albatross.SimpleContext (’.”)

>>> ctx.locals.spam = 'manufactured meat’
>>> ctx.locals.potato = ('mash’, ’'Mashed Potato’)
>>> ctx.locals.sel = ['manufactured meat’, ’'eggs’]

>>> albatross.Template(ctx, ’<magic>", ’’’
<al-select name="sel" multiple>
<al-option valueexpr="spam" />
<al-option valueexpr="potato" />
<al-option>eggs</al-option>
<al-option>bacon</al-option>
</al-select whitespace>
..o PPy Lto_html (ctx)
>>> ctx.flush_content ()
<select multiple name="sel"><option selected>manufactured meat</option><option value="mash">M

label="..." attribute

Use the 1abel attribute to specify the control label. This overrides the body of the <al-option> tag.

labelexpr="..." attribute

Use the 1abelexpr attribute to specify an expression to be evaluated to derive the control label. This overrides
the body of the <al-option> tag.

>>> import albatross
>>> ctx = albatross.SimpleContext (’.”)
>>> ctx.locals.spam = 'manufactured meat’
>>> ctx.locals.sel = ['spam’, ’"eggs’]
>>> albatross.Template (ctx, ’<magic>", ’’’
<al-select name="sel" multiple>
<al-option labelexpr="spam">spam</al-option>
<al-option>eggs</al-option>
</al-select whitespace>
... 7)Yy .to_html (ctx)
>>> ctx.flush_content ()
<select multiple name="sel"><option value="spam" selected>manufactured meat</option><option s

8.2.5 <al-textarea>

Albatross browser request merging depends upon the functionality provided by the <al-textarea> tag. If you
do no use this tag in applications then the standard request merging will not work.

alias="..." attribute

The value of the alias attribute is passed to the make_alias () method of the execution context. The return
value is then used as the generated name (name="..." attribute) attribute.

The execution context make_alias () method splits the alias attribute at the last .’ and resolves the left
hand side to an object reference. The albatross_alias () method is then called on that object and the result
is combined with the ‘. and the right hand side of the of the alias attribute to produce the generated name
attribute. The resolved object is entered in the the local namespace and the session using the name returned by the

albatross_alias () method.

Refer to the documentation of the alias attribute of the <al—-input> tag (alias="...” attribute) for an example
of the mechanism described above.

98 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

list attribute

If you are using an execution context that inherits from the NameRecorderMixin (nearly all do — see
chapter Prepackaged Application and Execution Context Classes) then the execution context will raise a
ApplicationError exception if multiple instances of an <al-textarea> tag with the same name are
added to a form. The 1ist attribute is used indicate that multiple instances are intentional.

The presence of the list attribute on an <al-textarea> tag makes the request merging in the
NameRecorderMixin class place any browser request values for the field into a list (field not present is repre-
sented by the empty list).

name=". . ." attribute

When determining the generated name attribute the tag looks for a number of attributes. Any supplied name
attribute will be ignored if either the alias (alias="..." attribute)

attributes are present.

>

attribute) or nameexpr (nameexpr=""...

If the value identified by the generated name attribute does not exist in the execution context then the enclosed
content will be supplied as the initial tag value.

For example:

>>> import albatross
>>> ctx = albatross.SimpleContext (’.")
>>> text = '’/
<al-textarea name="msg">
Type in some text
</al-textarea whitespace>
>>> albatross.Template(ctx, ’'<magic>’, text).to_html (ctx)
>>> ctx.flush_content ()
<textarea name="msg">Type in some text
</textarea>
>>> ctx.locals.msg = 'This came from the program’
>>> albatross.Template (ctx, ’<magic>’, text).to_html (ctx)
>>> ctx.flush_content ()
<textarea name="msg">This came from the program</textarea>

Before the tag value is written it is escaped to make all &, <, >, and " characters safe.

nameexpr="..." attribute

This attribute is ignored if the alias (alias="...” attribute) attribute is present.

”»

The expression in the value of the nameexpr attribute is evaluated to determine the generated name (name=""...
attribute) attribute.

One shortcoming of the alias attribute is that you can only perform input on object attributes. The nameexpr
enables you to perform input on list elements.

”»

Refer to the documentation of the nameexpr attribute of the <al-input> tag (nameexpr=""...
an example.

attribute) for

noescape attribute

The noescape attribute is used to suppress escaping of the execution context value associated with the name
(name="..." attribute) attribute.

8.2. Enhanced HTML Tags 99

Albatross Documentation, Release 1.40

>>> import albatross

>>> ctx = albatross.SimpleContext (’.”)

>>> ctx.locals.msg = 'Should escape < & >...’

>>> albatross.Template(ctx, '<magic>’, "'’
<al-textarea name="msg" noescape whitespace/>
77y sto_html (ctx)

>>> ctx.flush_content ()

<textarea name="msg">Should escape < & >...</textarea>

8.2.6 <al-a>

This tag acts as an enhanced version of the standard HTML <a> tag.

expr="..." attributes

This attribute is ignored is any of the following attributes are present; prevpage, nextpage (prevpage="..."
and nextpage="..." attributes), treefold, treeselect,or treeellipsis (treeselect="...", treefold=""...
and treeellipsis="...” attributes).

”»

’

The specified expression is evaluated to generate an href (href="..." attributes) attribute. The generated attribute

is then processed as per the href attribute.

href="..." attributes

s

This attribute is ignored is any of the following attributes are present; prevpage, nextpage (prevpage=""...
and nextpage=".." attributes), treefold, treeselect, treeellipsis (treeselect="...", treefold="..."
” attributes).

and treeellipsis=""..

.’ attributes), or expr (expr=""...
When the expr attribute is used, then generated value is processed in the same as a value supplied in the href
attribute.

If the href does not contain a ‘?” (separates the path from the query), but does contain a ‘=" then the href is
rewritten as current_url?*href*.

>>> import albatross
>>> class Ctx(albatross.SimpleContext) :
def current_url (self):
return ’'magic’

>>> ctx = Ctx(".")
>>> albatross.Template(ctx, '<magic>’', "'’
<al-a href="login=1">Login</al-a whitespace>
... "7 7) sto_html (ctx)
>>> ctx.flush_content ()
Login

If the href does not contain either a ‘?” or a ‘=" then the href is assumed to be a page identifier so it is
transformed into a redirect url by the redirect_url () execution context method.

>>> import albatross
>>> class Ctx(albatross.SimpleContext) :
def current_url (self):
return ’'magic’
def redirect_url (self, loc):

o

return ’'here/%s’ % loc

>>> ctx = Ctx(".")
>>> ctx.locals.name = ’'eric’

100 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

>>> albatross.Template(ctx, '<magic>’, "'’

)

<al-a expr="’login=%s’ % name">Login</al-a whitespace>
<al-a expr="'remote?login=%s’ % name">Login</al-a whitespace>
<al-a href="page">Login</al-a whitespace>

... "7y to_html (ctx)

>>> ctx.flush_content ()

Login

Login

Login

node="..." attribute

The node attribute is used in conjunction with the treeselect, treefold and treeellipsis (tfreese-
lect="...", treefold="..." and treeellipsis="..." attributes) attributes. It is ignored otherwise.

When this attribute is present the node identified by evaluating the expression in the attribute value will be used
when generating the href (href="..." attributes) attribute.

prevpage="..." and nextpage="..." attributes
The prevpage and nextpage attributes generate an href (href="..." attributes) attribute that respectively
selects the previous and next pages of an <al-for> ListIterator (Listlterator Objects).

The attribute value specifies the name of the iterator.

The generated href attribute is of the form current_url?*name*,*iter*=1 where current_url is the path compo-
nent returned from the Python urlparse.urlparse () function (via the execution context current_url ()
method), name is either prevpage or nextpage, and ifer is the specified iterator.

For example:

>>> import albatross
>>> class Ctx(albatross.SimpleContext) :
def current_url (self):
return 'magic’

>>> ctx = Ctx(".")

>>> albatross.Template (ctx, ’<magic>", ’’’
<al—-a nextpage="m">Next Page</al-a whitespace>
r7) sto_html (ctx)

>>> ctx.flush_content ()

Next Page

treeselect="...",treefold="..." and treeellipsis="..." attributes

”» ”»

These attributes are ignored if any either the prevpage (prevpage="...
nextpage attributes are present.

and nextpage="..." attributes), or

”»

The treeselect, treefold, and treeellipsis attributes generate an href (href=".." attributes)
attribute that respectively select, open/close, or expand the ellipsis of an <al-tree> (<al-tree>) node via
a LazyTreelterator (LazyTreelterator Objects) or EllipsisTreelterator (EllipsisTreelterator Ob-
Jjects) iterator.

Refer to the <al-input> tag for more information on how to use these attributes (treeselect="...", treefold="..."
and treeellipsis="..." attributes).
If the node (node="..." attribute) attribute if it is present it defines the node to operate upon. Otherwise the node

operated upon is the current value of the LazyTreeIterator iterator.

The attribute value specifies the name of the LazyTreeIterator iterator.

8.2. Enhanced HTML Tags 101

Albatross Documentation, Release 1.40

The generated href attribute is of the form current_url?*name* *iter*,*alias*=1 where current_url is the
path component returned from the Python urlparse.urlparse () function (via the execution context
current_url () method), name is either treeselect, treefold or treeellipsis, iter is the spec-
ified iterator, and alias is the values returned by the albatross_alias () method of the specified node.

8.2.7 <al-img>

’

Use this tag to dynamically generate the src (src="..." attribute) attribute of an tag.

expr="..." attribute
You must supply an expr attribute containing an expression that is evaluated to generate the output src (sre="..."
attribute) attribute of the tag.

For example:

>>> import albatross

>>> ctx = albatross.SimpleContext (’.")

>>> ctx.locals.src = 'http://icons.r.us/spam.png’

>>> albatross.Template(ctx, ’<magic>", ’’’
<al-img expr="src" whitespace>
777y to_html (ctx)

>>> ctx.flush_content ()

noescape attribute
The noescape attribute can be used to suppress escaping of the src (:ref :tag-img-src) attribute.

>>> import albatross

>>> ctx = albatross.SimpleContext (’.")

>>> ctx.locals.url = 'http://www.com/img?a=1l&b=2"

>>> albatross.Template(ctx, ’<magic>", ’’’
<al-img expr="url" noescape whitespace>
777y cto_html (ctx)

>>> ctx.flush_content ()

src="..." attribute

’

This attribute is ignored. Use the expr (expr="..." attribute) attribute to generate the <src> attribute.

8.3 Other HTML Tags

Arbitrary HTML tags can access the templating engine by prefixing the tag with “al-“. Attributes of the tag can
then be selectively evaluated to derive their value:

* Appending “expr” to the attribute name causes the value of the attribute to be evaluted and the results of the
evaluation substituted for the value.

* Appending “bool” results in the attribute value being evaluated in a boolean context. If the result is True,
a boolean HTML attribute is emitted, and if the result is False, no attribute is emitted.

* Any other attributes are passed through unchanged.

For example:

102 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

<al-td colspanexpr="i.span()">
could produce
<td colspan="3">

In the following example:

<al-input name="abc.value" disabledbool="abc.isdisabled()">

If abc.isdisabled () evaluates as True, then the disabled attribute is emitted:

<input name="abc.value" disabled>

Butif abc.isdisabled () evaluates as False, then the disabled attribute is suppressed entirely:

<input name="abc.value">

In the following example, we change the styling of alternate rows in a table:

>>> import albatross
>>> ctx = albatross.SimpleContext (’.")

>>> ctx.locals.names = [’'Alex’, ’'Fred’, ’Guido’, ’'Martin’, ’'Raymond’, ’'Tim’]
>>> albatross.Template(ctx, ’<magic>", ’’’
<table>
<al-for iter="i" expr="names">
<al-tr classexpr="["1light’, ’'dark’][i.index() % 2]" whitespace>
<td><al-value expr="i.value ()" /></td>
</al-tr>
</al-for>
</table>

... "77) . to_html (ctx)
>>> ctx.flush_content ()

<table>

<tr class="1light">
<td>Alex</td>

</tr><tr class="dark">
<td>Fred</td>

</tr><tr class="light">
<td>Guido</td>

</tr><tr class="dark">
<td>Martin</td>

</tr><tr class="light">
<td>Raymond</td>

</tr><tr class="dark">
<td>Tim</td>

</tr></table>

8.4 Execution and Control Flow

Tags in this section provide just enough programming capability to allow template files to react to and format

values from the execution context.

8.4. Execution and Control Flow

103

Albatross Documentation, Release 1.40

8.4.1 <al-require>

This tag is used to specify the minimum version of the Albatross templating system that will correctly parse your
template, or to specify templating features (that may be implemented by extension modules) that are required to
parse your template.

If the templating system has a lower version number, or the extension feature is not available, an
ApplicationError Exception is raised when the template is parsed.

version="..." attribute

This attribute specifies the minimum version of the Albatross templating system required to correctly parse your
template. Specify the lowest version that will correctly parse your template.

Templating Version Albatross Version | Template feature

1 up to 1.20

2 1.30 and up prefixing any tag with al- now allows any attribute to be evaluated
feature="..." attribute

If the feature attribute is present, it specifies a comma-separated list of templating features that will be required
to correctly parse your template. At present, no features are available.

8.4.2 <al-include>

Use this tag to load and execute another template file at the current location. You can specify the name of the
included template file by name using the name (name="..." attribute) attribute or by expression using the expr

(expr="..." attribute) attribute.

expr="..." attribute

If the expr attribute is present it is evaluated when the template is executed to generate the name of a template
file. The specified template file is loaded and executed with the output replacing the <al-include> tag.

For example:

>>> open(’other.html’, 'w’).write('name = "<al-value expr="name">"’")

>>> import albatross

>>> ctx = albatross.SimpleContext (’.”)

>>> ctx.locals.name = 'other.html’

>>> albatross.Template(ctx, '<magic>’, "'’
Inserting <al-value expr="name">: <al-include expr="name"> here.
"77) .to_html (ctx)

>>> ctx.flush_content ()

Inserting other.html: name = "other.html" here.

name="..." attribute

This attribute is ignored if the expr attribute is present.

When the template is executed the specified template file is loaded and executed with the output replacing the
<al-include> tag.

For example:

104 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

>>> open(’other.html’, 'w’).write(’name = "<al-value expr="name">"’")
>>> import albatross
>>> ctx = albatross.SimpleContext (’.")
>>> ctx.locals.name = ’‘other.html’
>>> albatross.Template(ctx, ’<magic>", ’’’
Inserting other.html: <al-include name="other.html"> here.
..o PPy Lto_html (ctx)
>>> ctx.flush_content ()
Inserting other.html: name = "other.html" here.

8.4.3 <al-comment>

This tag suppresses the execution and output of any contained content, although the contained content must be
syntactically correct.

For example:

>>> import albatross

>>> ctx = albatross.SimpleContext (’.")

>>> albatross.Template(ctx, '<magic>’, "'’
Before,<al-comment>

This will not be executed

</al-comment> after.

. 777y sto_html (ctx)

>>> ctx.flush_content ()

Before, after.

8.4.4 <al-flush>

When the template file interpreter encounters an <al-flush> during execution it flushes all accumulated HTML
to output.

Usually HTML is accumulated in the execution context and is not sent to the output until the f 1ush_content ()
is called. This gives programs the opportunity to handle exceptions encountered during template execution without
partial output leaking to the browser.

When the program is performing an operation that runs for some time this behaviour may give user the impression
that the application has entered an infinite loop. In these cases it is usually a good idea to provide incremental
feedback to the user by placing <al-flush> tags in your template files.

>>> import albatross

>>> ctx = albatross.SimpleContext (’.")

>>> albatross.Template(ctx, '<magic>’, "'’
Processing results...
<al-flush>
Finished

... 77) cto_html (ctx)

Processing results...

>>> ctx.flush_content ()

Finished

8.4.5 <al-if>/<al-elif>/<al-else>

Use of these tags parallels the 1 f/elif/else keywords in Python.

The <al-if> tag is a content enclosing tag while <al-elif> and <al-else> are empty tags that partition
the content of the enclosing <al-1if> tag.

8.4. Execution and Control Flow 105

Albatross Documentation, Release 1.40

expr="..." attribute

The expr attribute is used in the <al-1if> and <al-elif> tags to specify a test expression. The expression is
evaluated when the template is executed.

If the text expression in the expr attribute of the <al-if> tag evaluates to a TRUE value then the enclosed
content up to either the next <al-elif> or <al-else> tag will be executed.

For example:

>>> import albatross

>>> ctx = albatross.SimpleContext (’.")

>>> ctx.locals.a = 10

>>> albatross.Template (ctx, ’<magic>", ’’’
<al-if expr="a < 15">

a (<al-value expr="a">) is less than 15.

<al-else>
a (<al-value expr="a">) is greater than or equal to 15.
</al-if>

... "77) cto_html (ctx)

>>> ctx.flush_content ()

a (10) 1s less than 15.

If the expression in the expr attribute of the <al-1f> tag evaluates FALSE then the enclosed content following
the <al-else> tag is executed.

For example:

>>> import albatross
>>> ctx = albatross.SimpleContext (’.")
>>> ctx.locals.a = 20
>>> albatross.Template (ctx, ’<magic>", 7’7’
<al-if expr="a < 15">
a (<al-value expr="a">) is less than 15.
<al-else>
a (<al-value expr="a">) is greater than or equal to 15.
</al-if>
77y cto_html (ctx)
>>> ctx.flush_content ()
a (20) is greater than or equal to 15.

The <al-elif> tag is used to chain a number of expression that are tested in sequence. The first test that
evaluates TRUE determines the content that is executed.

For example:

>>> import albatross
>>> ctx = albatross.SimpleContext (’.”)
>>> ctx.locals.a = 30
>>> albatross.Template (ctx, '<magic>’, "'’
<al-if expr="a < 15">
a (<al-value expr="a">) is less than 15.
<al-elif expr="a < 25">
a (<al-value expr="a">) is greater than or equal to 15 and less than 25.
<al-elif expr="a < 35">
a (<al-value expr="a">) is greater than or equal to 25 and less than 35.
<al-else>
a (<al-value expr="a">) is greater than or equal to 25.
</al-if>
... 77y Lto_html (ctx)
>>> ctx.flush_content ()
a (30) is greater than or equal to 25 and less than 35.

106 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

8.4.6 <al-value>

This tag allows you to evaluate simple expressions and write the result to output.

date="..." attribute

If a date attribute is specified then the enclosed format string is passed to the Python time.strftime ()
function along with the result of the expression in the expr (expr="..." attribute) attribute. The result of
time.strftime () is then written to the output.

For example:

>>> import albatross
>>> import time
>>> ctx = albatross.SimpleContext (’.")
>>> albatross.Template(ctx, ’<magic>", ’’’
The time is <al-value expr="time.mktime ((2001,12,25,1,23,45,0,0,-1))"
date="%H:%M:%S" whitespace>
777y to_html (ctx)
>>> ctx.flush_content ()
The time is 01:23:45

expr="..." attribute

This attribute must the specified. It contains an expression that is evaluated when the template is executed and the
result is written as a string to the output.

For example:

>>> import albatross

>>> ctx = albatross.SimpleContext (’.”)

>>> ctx.locals.items = [’'pencil’, ’eraser’, ’lunchbox’]

>>> albatross.Template(ctx, '<magic>’, "'’
There are <al-value expr="len(items)" whitespace> items
777y cto_html (ctx)

>>> ctx.flush_content ()

There are 3 items

lookup="..." attribute

”»

When the 1ookup attribute is specified the result of the expression in the expr (expr="..." attribute) attribute
is used to retrieve content from the lookup table named in the 1ookup attribute. This is a very useful way to
separate the internal representation of program value from the presentation of that value.

For example:

>>> import albatross

>>> ctx = albatross.SimpleContext (’.")

>>> ctx.locals.simple = 0

>>> ctx.locals.works = 1

>>> albatross.Template (ctx, ’<magic>", ’’’
<al-lookup name="bool"><al-item expr="0">FALSE</al-item>TRUE</al-lookup>
Simple: <al-value expr="simple" lookup="bool" whitespace>
Works: <al-value expr="works" lookup="bool" whitespace>

... 77y Lto_html (ctx)

>>> ctx.flush_content ()

Simple: FALSE

Works: TRUE

8.4. Execution and Control Flow 107

Albatross Documentation, Release 1.40

Please refer to the <al—-1lookup> tag reference for an explanation of that tag and more complex examples.

noescape attribute

If the noescape attribute is present then the value is not escaped. Only use this attribute when you are sure that
the result of the expression is safe. Without this attribute all &, <, >, and " are escaped.

For example:

>>> import albatross
>>> ctx = albatross.SimpleContext (’.")
>>> ctx.locals.field = '’
>>> albatross.Template (ctx, '<magic>’, "'’
Safe: <al-value expr="field" whitespace>
Oops: <al-value expr="field" noescape whitespace>
... 777y Lto_html (ctx)
>>> ctx.flush_content ()
Safe:
Oops:

8.4.7 <al-exec>

This tag allows you to place arbitrary Python code in a template file.

expr="..." attribute

The expression is specified in the expr attribute. It is compiled using kind = " exec’ and evaluated when the
template is executed.

For example:

>>> import albatross
>>> ctx = albatross.SimpleContext (’.”)
>>> albatross.Template (ctx, '<magic>’, '’
<al-exec expr="
results = []
for n in range (2, 10):
for x in range (2, n):

ifn % x == 0:
results.append(’ ¢d equals ¢d * ¢d’ % (n, x, n/x))
break
else:
results.append(’ ¢d is a prime number’ % n)

">

<al-for iter="1" expr="results">
<al-value expr="l.value()"

</al-for>

... 7)Y .to_html (ctx)

>>> ctx.flush_content ()

is a prime number

is a prime number

equals 2 *x 2

is a prime number

equals 2 * 3

is a prime number

equals 2 * 4

equals 3 *x 3

whitespace>

O 00 J o U W N

108 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

If you need to include the same quote character used to enclose the attribute value in your expression you can
escape it using a backslash (“$\”).

For example:

>>> import albatross

>>> ctx = albatross.SimpleContext (’.")

>>> albatross.Template(ctx, '<magic>’, r’’’
<al-exec expr="a = "\"'">
a = <al-value expr="a" whitespace>

. 777y sto_html (ctx)

>>> ctx.flush_content ()

a = "

8.4.8 <al-for>

This tag implements a loop in almost the same way as the for keyword in Python.

The tag uses an instance of the ListIterator (Listlterator Objects) identified in the local namespace by the

iter (iter="..." attribute) attribute to iterate over the sequence defined by the expression in the expzr (expr=""...
attribute) attribute.

>>> import albatross

>>> ctx = albatross.SimpleContext (’.”)

>>> albatross.Template (ctx, ’<magic>", ’’’
<al-for iter="1i" expr="range (15)" whitespace="indent">
<al-value expr="i.value()">
</al-for whitespace>

... 7)Yy .to_html (ctx)

>>> ctx.flush_content ()

012345678910 11 12 13 14

Note that you must use the value () method of the iterator to retrieve the current sequence value, or set a template
namespace name via the vars attribute into which it will be stored.

”»

When using pagination mode via the pagesize (pagesize="..." attribute) attribute the prevpage and
nextpage attributes of the <al-input> (<al-input>) and <al-a> (<al-a>) tags can be used to automat-
ically page forwards and backwards through a sequence.

The following simulates pagination via the set_backdoor () ListIterator method and shows other data
that is maintained by the iterator.

>>> import albatross
>>> ctx = albatross.SimpleContext (’.")
>>> ctx.locals.seq = range(9)
>>> t = albatross.Template(ctx, ’'<magic>’, 7’7
pagesize has_prevpage has_nextpage index start count value

<al-for iter="1i" expr="seq" pagesize="3">

<al-value expr="' %8s i.pagesize () ">
<al-value expr="'3%13s’ % i.has_prevpage()">
<al-value expr="'%13s’ % i.has_nextpage()">
<al-value expr="'3%6s i.index () ">

<al-value expr="'3 i.start () ">

<al-value expr="'" | .count () ">

<al-value expr="'3%6s’ % i.value ()" whitespace>

... </al-for>""")

>>> t.to_html (ctx)

>>> ctx.locals.i.set_backdoor (' nextpage’, ’'nextpage,i’)
>>> t.to_html (ctx)

>>> ctx.locals.i.set_backdoor (' nextpage’, ’'nextpage,i’)

8.4. Execution and Control Flow 109

Albatross Documentation, Release 1.40

>>> t.to_html (ctx)
>>> ctx.flush_content ()
pagesize has_prevpage has_nextpage index start count wvalue

3 False True 0 0 0 0
3 False True 1 0 1 1
3 False True 2 0 2 2

pagesize has_prevpage has_nextpage index start count value

3 True True 3 3 0 3
3 True True 4 3 1 4
3 True True 5 3 2 5

pagesize has_prevpage has_nextpage index start count wvalue

3 True False 6 6 0 6

3 True False 7 6 1

3 True False 8 6 2 8
cols="..." attribute

This attribute is used to format a sequence as multiple columns. The attribute value is an integer that specifies the
number of columns.

Rather than evaluate the enclosed content once for each item in the sequence, the tag evaluates the content for
each row of items in the sequence. The items in each row can be formatted by using an inner <al-for> tag.

By default the items flow down columns. To flow across columns you must use the £1ow (flow="_.." attribute)
For example:
>>> import albatross

>>> ctx = albatross.SimpleContext (’.")
>>> albatross.Template (ctx, '<magic>',

rrr

<al-for iter="i" expr="range (15)" cols="4">
<al-for iter="c" expr="i.value()">
<al-value expr="' ! .value () ">

</al-for whitespace>
</al-for>

..o Py to_html (ctx)

>>> ctx.flush_content ()

4 8 12

5 9 13

6 10 14

7 11

w N = O

Multi-column formatting does not support pagination.

continue attribute

When paginating items via the pagesize (pagesize="..."” attribute) attribute, the iterator index will reset to the
first index displayed on the page if you use an iterator more than once on the page. The continue attribute
suppresses the sequence index reset causing the elements to flow on from the previous page.

For example:

>>> import albatross
>>> class Ctx(albatross.SimpleContext, albatross.HiddenFieldSessionMixin) :
def _ init__ (self):
albatross.SimpleContext.__init__ (self, ".")
albatross.HiddenFieldSessionMixin._ _init_ (self)

110 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

>>> ctx = Ctx()
>>> albatross.Template(ctx, ’<magic>", ’’’
A:<al-for iter="i" expr="range (500)" pagesize="20" whitespace="indent">
<al-value expr="i.value()">

</al-for whitespace>
B:<al-for iter="i" pagesize="10" whitespace="indent">
<al-value expr="i.value()">
</al-for whitespace>
C:<al-for iter="i" pagesize="15" continue whitespace="indent">
<al-value expr="i.value()">
</al-for whitespace>
L. Ty sto_html (ctx)
>>> ctx.flush_content ()
A: 01 2345067891011 12 13 14 15 16 17 18 19
B: 01234567189
C: 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

expr="..." attribute
The expr attribute specifies an expression that yields a sequence that the iterator specified in the iter (iter="..."
attribute) attribute will iterate over. All of the enclosed content is then evaluated for each element in the sequence.

For example:

>>> import albatross
>>> ctx = albatross.SimpleContext (’.")
>>> albatross.Template(ctx, ’<magic>", ’’’
<al-for iter="1i" expr="range (1l5)" whitespace="indent">
<al-value expr="i.value()">
</al-for whitespace>
... 7)Y sto_html (ctx)
>>> ctx.flush_content ()
012345678910 11 12 13 14

flow="..." attribute

”»

This attribute is used with the cols (cols="..." attribute) attribute to control the flow of values across columns.
The default value is "down™". Use the value "across" to flow items across columns.

Rather than evaluate the enclosed content once for each item in the sequence, the tag evaluates the content for
each row of items in the sequence. The items in each row can be formatted by using an inner <al-for> tag.

For example:
>>> import albatross

>>> ctx = albatross.SimpleContext (’.")
>>> albatross.Template(ctx, '<magic>’", "'’

<al-for iter="i" expr="range(1l5)" cols="4" flow="across">
<al-for iter="c" expr="i.value()">
<al-value expr="' 2%2d’ % c.value()">

</al-for whitespace>
</al-for>
... 77y to_html (ctx)
>>> ctx.flush_content ()

o 1 2 3
4 5 6 7
8 9 10 11
12 13 14

Multi-column formatting does not support pagination.

8.4. Execution and Control Flow 111

Albatross Documentation, Release 1.40

iter="..." attribute

This attribute specifies the name of the ListIterator (Listlterator Objects) that will be used to iterate over

the items in the sequence defined by the expression in the expr (expr="..." attribute) attribute.

pagesize="..." attribute
This attribute is used to present a sequence of data one page at a time. The attribute value must be an integer that
specifies the number of items to display in each page.

Use of the pagesize attribute places the sequence iterator into page mode and limits the number of elements
that will be displayed.

For example:
>>> import albatross

>>> class Ctx(albatross.SimpleContext, albatross.HiddenFieldSessionMixin) :
def _ init_ (self):

albatross.SimpleContext._ _init__ (self, ".’)
>>> ctx Ctx ()
>>> ctx.locals.__dict__.keys()

>>> albatross.Template (ctx, ’<magic>", ’’’
<al-for iter="i" expr="range (500)" pagesize="20" whitespace="indent">
<al-value expr="i.value()">
</al-for whitespace>
777y cto_html (ctx)

>>> ctx.flush_content ()

012345678910 11 12 13 14 15 16 17 18 19

>>> ctx.locals.__dict__.keys ()

[71i7]

Pagination support requires that session support be present in the execution context. All of the Albatross applica-
tion objects provide session capable execution contexts by default. The SimpleContext class does not support
sessions so it is necessary to augment the class for the above example. Note also that when the <al-for> tag
processes the pagesize attribute it places the sequence iterator into the session.

prepare attribute

This attribute allows you to place pagination controls before the formatted sequence content.

When the prepare attribute is present the <al-for> tag will perform all processing but will not write any
output. This allows you to test pagination results before presenting output.

For example:
>>> import albatross

>>> class Ctx(albatross.SimpleContext, albatross.HiddenFieldSessionMixin):
def _ init_ (self):

albatross.SimpleContext.__init__ (self, 7 .7)
albatross.HiddenFieldSessionMixin._ _init__ (self)
>>> ctx Ctx ()
>>> albatross.Template(ctx, ’<magic>", ’’’
<al-for iter="i" expr="range (500)" pagesize="20" prepare/>
<al-if expr="i.has_prevpage () "> prev</al-if>
<al-if expr="i.has_nextpage () "> next</al-if>
<al-for iter="i" pagesize="20" whitespace="indent">
<al-value expr="i.value()">

112 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

</al-for whitespace>
"7y cto_html (ctx)
>>> ctx.flush_content ()
next 01 2 3456 78 9 10 11 12 13 14 15 16 17 18 19

Note the XML empty tag syntax on the <al-for prepare> tag.

vars="..." attribute

If this attribute is set, the current value of the iterator (as returned by value () will be saved to a variable of this
name in the local namespace.

For example:

>>> import albatross

>>> ctx = albatross.SimpleContext (’.")

>>> albatross.Template(ctx, '<magic>’, "'’
<al-for vars="v" expr="range(l5)" whitespace="indent">
<al-value expr="v">
</al-for whitespace>

... 77y sto_html (ctx)

>>> ctx.flush_content ()

0123455678910 11 12 13 14

If the attribute is set to a comma separated list of variables, the iterator value will be unpacked into these variables.
The iterator values must iterable in this case (typically a tuple or list). If there are more variables listed than there
are values to be unpacked, then the unused variables are left unchanged. Conversely, if there are more values than
variables, only the values with corresponding names will be unpacked.

For example:

>>> import albatross
>>> ctx = albatross.SimpleContext (’.")
>>> ctx.locals.items = [(1.23, 'Red’), (4.71, ’'Green’), (0.33, "Blue’)]
>>> albatross.Template(ctx, ’<magic>", ’’’
<al-for vars="price, label" expr="items">
<al-value expr="'$ " % price"> <al-value expr="label" whitespace>
</al-for>
"r7) sto_html (ctx)
>>> ctx.flush_content ()
$1.23 Red
$4.71 Green
$0.33 Blue

Listlterator Objects

The iterator named in the iter (iter="..." attribute) attribute of the <al-for> tagis an instance of this class. By
using an object to iterate over the sequence the toolkit is able to provide additional data that is useful in formatting
HTML.

The iterator will retrieve each value from the sequence exactly once. This allows you to use objects that act as
sequences by implementing the Python sequence protocol. Only __getitem__ () is required unless you use
pagination, then __len__ () is also required.

pagesize ()
Returns the pagesize that was set in the pagesize attribute.

has_prevpage ()
Returns TRUE if the page start index is greater than zero indicating that there is a previous page.

8.4. Execution and Control Flow 113

Albatross Documentation, Release 1.40

has_nextpage ()
Returns TRUE if the sequence length is greater than the page start index plus the _pagesize member
indicating that there is a next page.

If the iterator has not been placed into “page mode” by the presence of a pagesize attribute a
ListIteratorError exception will be raised.

index ()
Returns the index of the current sequence element.

start ()
Returns the index of the first sequence element on the page.

count ()
Returns the index of the current sequence element within the current page. This is equivalent to index ()
- start ().

value ()
Returns the current sequence element.

Most of the methods and all of the members are not meant to be accessed from your code but are documented
below to help clarify how the iterator behaves.

_index
Current sequence index — returned by index ().

_start
Sequence index of first element on page — returned by start ().

_count
Sequence index of current element on page — returned by count ().

seq
Sequence being iterated over — initialised to None and set by set__sequence ().

have value
Indicates the state of the current element. There are three possible values: None indicates that the state is
unknown and will be established when the sequence is next accessed, zero indicates that the end of sequence
has been reached and there is no valid element, and one indicates the current element is valid.

_pagesize
Current page size — initialised to 0 and set by the presence of a pagesize attribute in the <al-for>
tag.

__getstate__ ()
When “page mode” is enabled the iterator is saved into the session (via the execution context
add_session_vars () method). This restricts the Python pickler to saving only the _start and
_pagesize members.

__setstate__ (tup)
Restores an iterator from the Python pickler.

len_ ()
When in “page mode” it returns the _pagesize member else it returns the length of the sequence.

set_backdoor (op, value)
The <al-input> and <al-a> tags provide nextpage and prevpage attributes that generate names
using a special backdoor format. When the browser request is merged the set_value () method of the
NamespaceMixin directs list backdoor input fields to this method. Refer to the documentation in section
NamespaceMixin Class.

The value argument is the browser submitted value for the backdoor field. If a value was submitted for the
backdoor field then the op argument is processed. If op equals "prevpage" or "nextpage" then the
iterator selects the previous or next page respectively.

114 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

get_backdoor (op)
When generating backdoor fields for the <al-input> and <al-a> tags the toolkit calls this method to
determine the value that will assigned to that field. The method returns 1.

set_pagesize (size)
Sets the _pagesize member to size.

has_sequence ()
Returns whether or not a sequence has been placed into the iterator (_seq is not None).

set_sequence (seq)
Sets the _seq to seq.

reset_index ()
If the <al-for> tag does not contain a cont inue attribute then this is called just before executing the
tag content for the first element in the sequence. It sets the _index member to _start.

reset_count ()
This is called just before executing the tag content for the first element in the sequence. It sets the _count
member to zero.

clear_value ()
Sets the _have_value member to None which causes the next call of has_value () to retrieve the
sequence element indexed by _index.

has_value()
When the _have_value member is None this method tries to retrieve the sequence element indexed by
_index. If an element is returned by the sequence it is saved in the _value member and _have_value
is set to one. If an IndexError exception is raised by the sequence then _have_value is set to zero.

The method returns TRUE if a sequence member is contained in _value.
By this mechanism the iterator retrieves each value from the sequence exactly once.

next ()
Retrieves the next value (if available) from the sequence into the _value member.

set_value (value)
A back door hack for multi-column output that sets respective values of the iterator to sequences created by
slicing the sequence in the expr attribute of the <al-for> tag.

8.4.9 <al-lookup>

The <al-lookup> tag uses a dictionary-style lookup to choose one of the contained <al-item> HTML frag-
ments. If no <al-item> tag matches, then the tag returns any content that was not enclosed by an <al-item>
tag. The <al-item> key values are derived by evaluating their expr attribute.

The <al-lookup> element will either be expanded in place if an expr attribute is given or, if named with an
name="..." attribute, expanded later via an <al-value> lookup="..." tag.

expr="..." attribute

If the expr attribute is used, this is evaluated and the content of the matching <al-item> element is returned.
If no match occurs, the unenclosed content is returned.

This form of the tag is akin to the switch or case statements that appear in some languages.
name="..." attribute
If the name="..." is used, the tag becomes a named lookup and expansion is deferred until the lookup is

referenced via the <al—-value> element. In this case, the lookup is performed on the evaluated value of the
<al-value> expr attribute.

8.4. Execution and Control Flow 115

Albatross Documentation, Release 1.40

For example:

>>> import albatross

>>> ctx = albatross.SimpleContext (’.")

>>> MILD, MEDIUM, HOT = 0, 1, 2

>>> albatross.Template(ctx, '<magic>’,
77 ’<al-lookup name="curry">
<al-item expr="MILD">Mild <al-value expr="curry"></al-item>
<al-item expr="MEDIUM">Medium <al-value expr="curry"></al-item>
<al-item expr="HOT">Hot <al-value expr="curry"></al-item>
</al-lookup>’"") .to_html (ctx)

>>> ctx.locals.spicy = 2

>>> ctx.locals.curry = ’'Vindaloo’

>>> albatross.Template (ctx, '<magic>’, "'’
<al-value expr="spicy" lookup="curry" whitespace>

... "77) cto_html (ctx)

>>> ctx.flush_content ()

Hot Vindaloo

By placing lookup tables in separate template files you can eliminate redundant processing via the
run_template_once () execution context method. This method is defined in the AppContext class that is
used as a base for all application execution contexts.

As the above example demonstrates, you are able to place arbitrary template HTML inside the lookup items.
As the content of the item is only executed when referenced, all expressions are evaluated in the context of the
template HTML that references the item.

8.4.10 <al-item>

The <al-item> tag must only be used as a child tag of an <al-lookup> (<al-lookup>) tag. to allow internal
application values to be converted to display form.

expr="..." attribute

The expr attribute defines an expression that is evaluated to generate a lookup table key for the parent
<al-lookup> (<al-lookup>) tag. When the parent <al-lookup> is executed all of the expr expressions
are evaluated to build a dictionary of items.

For example:

>>> import albatross

>>> ctx = albatross.SimpleContext (’.")

>>> ctx.locals.key = 2

>>> albatross.Template (ctx, '<magic>',
77 ’<al-lookup name="look">
<al-item expr="1">item expr="1" key is <al-value expr="key"></al-item>
<al-item expr="key">item expr="key" key is <al-value expr="key"></al-item>
</al-lookup>’"’") .to_html (ctx)

>>> ctx.locals.key = 1

>>> t = albatross.Template (ctx, ’'<magic>’, 7’7
<al-value expr="key" lookup="look" whitespace>

A

>>> t.to_html (ctx)

>>> ctx.flush_content ()

item expr="1" key is 1

>>> ctx.locals.key = 2

>>> t.to_html (ctx)

>>> ctx.flush_content ()

item expr="key" key is 2

116 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

8.4.11 <al-tree>
This tag is used to display tree structured data. A pre-order traversal (node visited before each child) of the tree is
performed and the enclosed content is evaluated for each node in the tree.

The treefold, treeselect, and treeellipsis attributes on the <al-input> (<al-input>) tag allow
the user to open, close, and select lazy tree nodes.

Section Displaying Tree Structured Data contains an example of a simple usage of the <al-tree> tag.

The samples/tree/treel sample program takes the simple example further and implements an application
that places a checkbox next to the name of each node name. A unique input field name is generated for each
checkbox by using the alias attribute described in section <al-input>.

The samples/tree/tree2 sample program demonstrates the use of the lazy <al-tree> attribute that
enables lazy child loading mode.

The samples/tree/tree3 sample program demonstrates the use of the el1ipsis <al-tree> attribute.
ellipsis attribute

The ellipsis attribute extends the lazy (lazy attribute) traversal. It collapses nodes close to the root of tree
as deeper nodes are opened.

expr="..." attribute

The expr attribute defines the root of the tree traversal.

iter="..." attribute

This attribute specifies the name of the TreeIterator (Treelterator Objects) that will be used to iterate over
the nodes in the tree defined by the expression in the expr (expr="..." attribute) attribute.

lazy attribute

The lazy attribute allows lazy traversal of the tree, with child nodes only being loaded when their parent is open.

single attribute

The single attribute places the tree in single select mode. Whenever a new node is selected by browser input
the previous selected node(s) will be deselected.

TreeNode Objects

There is no actual TreeNode class. Trees can be constructed from objects of any class as long as they implement
the interface described here.

children
This member must only be present in non leaf nodes. It contains a list of immediate child nodes of this
node.

When using lazy loaded trees this member should be initialised to an empty list in the constructor. The
presence of the children member makes the toolkit treat the node as a non-leaf node.

8.4. Execution and Control Flow 117

Albatross Documentation, Release 1.40

children_loaded
This member needs only be present in non leaf nodes that are referenced by an <al-tree> tag in lazy
mode. It should be initialised to 0 in the node constructor. The toolkit will set the member to 1 once it has
called the 1oad_children () method of the node.

load_children (ctx)
This method must be defined for nodes that are referenced by an <al-tree> tag in lazy mode. It should
must populate the children member with the immediate child nodes.

The toolkit will call this method when it needs to display the child nodes of a node and they have not yet
been loaded (children_loaded== 0).

The toolkit “knows” when it needs to see the child nodes of a particular node so it asks that node to load the
children. This allows potentially huge trees to be browsed by having the toolkit only load those nodes that
are visible.

albatross_alias ()
This method must be defined for nodes that are referenced by an <al-tree> tag in lazy mode. It must
return a unique string identifier for this node that is suitable for use as part of an HTML input field name or
URL component via the special t reeselect, treefoldand treeellipsis attributes. The identifier
must be the same each time the program is run (so str (id (self)) will not work).

The TreeIterator uses the node identifier to record which nodes are open and which are selected. The
same identifier is also used when the node is referenced via an alias (alias="...” attribute) attribute of an

<al-input> tag.

Treelterator Objects

An instance of TreeIterator class (or the sub-classes LazyTreeIterator (LazyTreelterator Objects) or
EllipsisTreelterator (EllipsisTreelterator Objects)) will be placed into the execution context using the
name specified in the iter (iter="..." attribute) attribute. This iterator will contain traversal data for the current
node each time the tag content is executed.

Note that it is also acceptable to create an instance of one of the Treelterator classes prior to rendering the template.
The set_selected_aliases () or set_open_aliases () methods can then be used to render the tree
with nodes already selected or open.

By using an object to iterate over the tree the toolkit is able to provide additional data that is useful in formatting
HTML. The toolkit also places the iterator into the session (you must be using an application class that supports
sessions).

value ()
Returns the current node.

tree_depth ()
Returns the depth of the visible tree, from the root to deepest node. A single node tree has a depth of one.

depth ()
Returns the depth of the current node.

span ()
Is shorthand for n.tree_depth() - n.depth (). It is intended to be used for the colspan
of the table cell containing the node name when laying the tree out in a table. See the

samples/tree/tree2.html template for just such an example.

line (depth)
Only useful when displaying a tree in tabular form where the root is in the first column of the first row.
Returns the type of line that should be displayed in each column up to the depth of the current node.

A return value of 0 indicates no line, 1 indicates a line that joins a node later than this node, and 2 indicates
a line that terminates at this node.

The example in section Displaying Tree Structured Data uses this method.

118 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

is_open ()
Returns TRUE if the current node is open. For non-lazy iterators, this is always TRUE except on leaf nodes.

is_selected()
For non-lazy iterators, this always returns FALSE.

has_children ()
Returns TRUE if the current node has children (ie. it defines a children member).

Most of the methods and all of the members are not meant to be accessed from your code but are documented
below to help clarify how the iterator behaves.

_value
Stores a reference to the current tree node — returned by value ().

_stack
As the tree is being traversed this list attribute records all parent nodes between the current node and the
root. This is used to determine which branch lines should be drawn for the current node.

_line
Stores the branch line drawing information for the current node. Elements of this list are returned by
line (depth) ().

_tree_depth
Stores the depth of the tree from the root to the deepest visible node. A single node tree has a depth of 1.
This is calculated immediately before the tree is displayed. This is returned by t ree_depth ().

set_1line (line)
Saves the line argument in _1line.

set_value (node)
Sets the _value to the node argument.

node_is_open (ctx, node)
Called internally whenever the toolkit needs to determine the open state of a tree node. For non-lazy iter-
ators, it returns whether or not the node in the node argument has children (because non-lazy iterators are
always open).

LazyTreelterator Objects

<al-tree> tags that include the 1azy attribute use an instance of the LazyTreeIterator class. This class
supports all the methods of the TreeIterator class, as well as the following:

is_open()
Returns TRUE is the current node is open. Calls the albatross_alias () method of the current node
and returns TRUE if the returned alias exists in the _open_aliases dictionary member.

is_selected()
Returns TRUE if the current node is selected. Calls the albatross_alias () method of the current
node and returns TRUE if the returned alias exists in the _selected_aliases dictionary member.

Some methods are designed to be called from application code, not from templates.

close_all(()
Closes all tree nodes by reinitialising the _open_aliases to the empty dictionary.

deselect_all ()
Deselects all tree nodes by reinitialising the _selected_aliases to the empty dictionary.

get_selected_aliases()
Returns a sorted list of aliases for all nodes that are selected (ie. in the _selected_aliases member).

set_selected aliases (aliases)
Builds anew _selected_aliases member from the sequence of aliases passed in the aliases argument.

8.4. Execution and Control Flow 119

Albatross Documentation, Release 1.40

get_open_aliases ()

Returns a sorted list of aliases for all nodes that are open (ie. in the _open_aliases member).

set_open_aliases (aliases)

Lazy

key

Builds a new _open_aliases member from the sequence of aliases passed in the aliases argument.

Treelterator instances add the follow private methods and members:

This member caches the value returned by the albatross_alias () method for the current node. This
key is then used to look up the _open_aliases and _selected_aliases members.

_open_aliases

A dictionary that contains the aliases for all tree nodes that are currently open. The contents of this dictionary
is maintained via the set_backdoor () method.

_selected_aliases

A dictionary that contains the aliases for all tree nodes that are currently selected. The contents of this
dictionary is maintained via the set_backdoor () method.

__getstate__ ()

Used to save the iterator in the session. This restricts the Python pickler to saving only the _lazy,
_open_aliases and _selected_aliases members.

__setstate__ (fup)

Restores an iterator from the Python pickler.

set_value (node)

Sets the _value to the node argument. When operating in lazy mode the albatross_alias () method
is called for node and the result is cached in _key.

node_is_open (ctx, node)

Called internally whenever the toolkit needs to determine the open state of a tree node. It returns whether or
not the node in the node argument is open. This always returns 0 for leaf nodes as they do not have children.

When in lazy mode the open state of node is retrieved from _open_aliases. If the node state is open
then the method checks the value of the node children_ loaded member. If children_ loaded is
FALSE then the node 1oad_children () is called to load the children of node.

set_backdoor (op, key, value)

The <al-input> and <al-a> tags provide treefold and treeselect attributes that generate
names using a special backdoor format. When the browser request is processed, the set_value () method
of the NamespaceMixin directs tree backdoor input fields to this method. Refer to the documentation in
section NamespaceMixin Class.

When the op argument is "treeselect" the _selected_aliases is updated for the node identified
by the key argument. If value is FALSE the key is removed else it is added.

When the op argument is "treefold" and value argument is TRUE then the open state of the node
identified by the key argument is toggled.

get_backdoor (op, key)

When generating backdoor fields for the <al-input> and <al-a> tags the toolkit calls this method to
determine the value that will assigned to that field.

When op is "treeselect" the method returns the current selected state of the node identified by key.

When op is "treefold" the method returns 1.

EllipsisTreelterator Objects

EllipsisTreelterator objects are created by using the ellipsis attribute on an <al-tree> tag. El-
lipsis trees are a variant of lazy trees where nodes at shallower levels are progressively collapsed into ellipses as
the user opens deeper nodes. The user can reopen the collapsed nodes by selecting an ellipsis.

120

Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

They support all the methods of the LazyTreeIterator (LazyTreelterator Objects), as well as the following
methods:

node_type ()
Returns O for a regular node, or 1 for nodes that have been collapsed into an ellipsis. This is actually
implemented on the LazyTreeIterator, but will always return O there.

EllipsisTreeIterator objects also have the following private methods and members:

_noellipsis_alias
Records the last ellipsis to be selected by the user, and is used to suppress the generate of an ellipsis at that
location next time the tree is rendered.

node_use_ellipsis (ctx, node)
Returns TRUE if it is acceptable to render the specified node as an ellipsis. If the node’s alias matches
_noellipsis_alias, FALSE is return, otherwise TRUE is returned if any of the node’s children are
open.

The behaviour of the set_backdoor () and get_backdoor () methods has been extended to recog-
nise a treeellipsis op. This is used to process browser requests to open an ellipsis (it sets the
_noellipsis_alias member.

8.5 Macro Processing

Tags in this section provide a simple macro processing environment for template files.

The main purpose of Albatross macros is to provide a mechanism to divide your HTML into presentation structure
and presentation appearance. By defining appearance presentation tricks inside macros you can make global
changes to your web application appearance by changing one macro.

The <al-macro> (<al-macro>) and <al-usearg> (<al-usearg>) tags are used to define macros, while
<al-expand> (<al-expand>) and <al-setarg> (<al-setarg>) are used to invoke and expand previously
defined macros.

The ResourceMixin (ResourceMixin Class) and ExecuteMixin (ExecuteMixin Class) classes provide the
Albatross macro definition and execution facilities respectively.

8.5.1 <al-macro>

The <al-macro> tagis used to define a macro. All enclosed content becomes part of the macro definition.

Executing the macro registers the macro with the execution context via the register_macro () method using
the name in the name (name="..." attribute) attribute.

Note that the execution of the macro content is deferred until later when the macro is expanded via the
<al-expand> (<al-expand>) tag. This means that executing a macro definition produces no output. Output is
produced only when the macro is expanded.

>>> import albatross

>>> ctx = albatross.SimpleContext (’.”)

>>> albatross.Template (ctx, ’<magic>", ’’’
<al-macro name="noargs">
Will be executed when macro is expanded.
</al-macro>
777y cto_html (ctx)

>>> ctx.flush_content ()

>>> albatross.Template (ctx, ’<magic>", ’’’
<al-expand name="noargs"/>

... "7y . to_html (ctx)

>>> ctx.flush_content ()

Will be executed when macro is expanded.

8.5. Macro Processing 121

Albatross Documentation, Release 1.40

The deferred execution also means that you can include content that only works within the context of the
<al-expand> tag.

>>> import albatross
>>> ctx = albatross.SimpleContext (’.")
>>> albatross.Template(ctx, ’<magic>", ’’’
<al-macro name="oops">
<al-value expr="oops">
</al-macro>
... "77) cto_html (ctx)
>>> ctx.flush_content ()
>>> templ = albatross.Template(ctx, '<magic>’', "'’
<al-expand name="oops"/>
Lo)
>>> try:
templ.to_html (ctx)
ctx.flush_content ()
except NameError, e:
print e

name ’‘oops’ is not defined

>>> ctx.locals.oops = ’'there is now’
>>> templ.to_html (ctx)

>>> ctx.flush_content ()

there is now

In the above example the content of the macro makes reference to a oops that is not defined in the execution
context when the macro was defined.

Inside a macro definition you can use as yet undefined macros.

>>> import albatross

>>> ctx = albatross.SimpleContext (’.")

>>> albatross.Template(ctx, ’<magic>", ’’’
<al-macro name="bold-red">
more <al-expand name="bold"><al-usearg></al-expand> please
<al-expand name="bold">more <al-usearg> please</al-expand>
</al-macro>

<al-macro name="bold">
<al-usearg></al-macro>
777y cto_html (ctx)
>>> ctx.flush_content ()
>>> albatross.Template(ctx, ’<magic>", ’’’
<al-expand name="bold-red">spam</al-expand>
777y to_html (ctx)
>>> ctx.flush_content ()
more spam please
more spam please

Care must by taken to ensure that you do not make circular macro references else you will cause a stack overflow.

name=". .. " attribute

The name attribute is used to uniquely identify the macro in the application.

8.5.2 <al-usearg>

The <al-usearg> tag is used inside a macro definition to define the location where content enclosed by the
<al-expand> (<al-expand>) tag should be placed when the macro is expanded.

122 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

All content enclosed by the <al-expand> tag is passed to the macro as the unnamed argument. The un-
named argument is retrieved in the macro definition by using an <al-usearg> tag without specifying a name

(name="".

>>>
>>>
>>>

>>>
>>>

>>>
1.
2.

name=". .

. attribute) attribute. When a macro expects only one argument it is best to use this mechanism.

import albatross

ctx = albatross.SimpleContext (’.”)
albatross.Template (ctx, ’'<magic>’, "'’
<al-macro name="double">

1. <al-usearg>

2. <al-usearg>

</al-macro>

777y to_html (ctx)

ctx.flush_content ()
albatross.Template (ctx, ’'<magic>’, "'’
<al-expand name="double">

spam

</al-expand>’'"") .to_html (ctx)
ctx.flush_content ()
spam
spam

. " attribute

Macros can be defined to accept multiple arguments. The name attribute is used to retrieve named arguments.
When invoking a macro that accepts named arguments the <al-setarg> (<al-setarg>) tag and name attribute
are used to define the content for each named argument.

>>>
>>>
>>>

>>>

>>>

import albatross
ctx = albatross.SimpleContext (’.”)
albatross.Template (ctx, ’'<magic>’, "'’
<al-macro name="namedargs" whitespace="indent">
The unnamed arg (<al-usearg>) still works,

but we can also include named arguments (<al-usearg name="argl">)
</al-macro>

777y to_html (ctx)
albatross.Template (ctx, ’'<magic>’, "'’
<al-expand name="namedargs">

unnamed arg<al-setarg name="argl">

named arg: argl</al-setarg>

</al-expand>

777y to_html (ctx)

ctx.flush_content ()

The unnamed arg (unnamed arg) still works,
but we can also include named arguments (named arg: argl)

8.5.3 <al-setdefault>

The <al-setdefault> tag is used inside a macro definition to specify default content for a named macro

argument.
tag.

The content enclosed by this tag will be used if the caller does not override it with a <al-setarg>

Note that only named arguments can have a default as the unnamed argument is always set, implicitly or explicitly,
by the calling <al-expand> tag.

>>>
>>>
>>>

import albatross
ctx = albatross.SimpleContext (’.”)
albatross.Template (ctx, ’'<magic>’, "'’
<al-macro name="pagelayout">
<al-setdefault name="title">Parrot</al-setdefault>

8.5. Macro Processing 123

Albatross Documentation, Release 1.40

<title><al-usearg name="title"></title>
</al-macro>
77y sto_html (ctx)
>>> albatross.Template (ctx, ’<magic>", ’’’
<al-expand name="pagelayout">
<al-setarg name="title">Lumberjack</al-setarg>
... </al-expand>'"'") .to_html (ctx)
>>> ctx.flush_content ()
<title>Lumberjack</title>
>>> albatross.Template(ctx, ’<magic>", ’’’
<al-expand name="pagelayout">
</al-expand>’'") .to_html (ctx)
>>> ctx.flush_content ()
<title>Parrot</title>

name="..." attribute

The name attribute is used to identify the named macro argument that will receive the enclosed content.

8.5.4 <al-expand>

The <al-expand> tag is used to expand a previously defined macro.

You can pass macro expansions as arguments to other macros.

>>> import albatross

>>> ctx = albatross.SimpleContext (’.")

>>> albatross.Template(ctx, '<magic>’, "'’
<al-macro name="red">
<al-usearg>
</al-macro>

<al-macro name="bold"><al-usearg></al-macro>
... 7y Lto_html (ctx)
>>> ctx.flush_content ()
>>> albatross.Template (ctx, ’<magic>", ’’’
<al-expand name="red">more <al-expand name="bold">spam</al-expand> please</al-expand>
<al-expand name="red"><al-expand name="bold">more spam please</al-expand></al-expand>
... "77) cto_html (ctx)
>>> ctx.flush_content ()
more spam please
more spam please

All arguments to macros are executed each time they are used in the macro definition. This means that you need
to be aware of side effects when using arguments more than once inside a macro.

>>> import albatross
>>> ctx = albatross.SimpleContext (’.”)
>>> albatross.Template(ctx, ’<magic>", ’’’
<al-macro name="yummy">
<al-for iter="i" expr="range (3)">
<al-usearg whitespace="indent">
</al-for>
</al-macro>
. 777y to_html (ctx)
>>> ctx.locals.food = ’spam’
>>> albatross.Template (ctx, '<magic>’, '’
<al-expand name="yummy">
<al-exec expr="food = food + "!’'">

124 Chapter 8. Templates Reference

Albatross Documentation, Release 1.40

<al-value expr="food">
</al-expand whitespace>
77y sto_html (ctx)
>>> ctx.flush_content ()
spam! spam!! spam!!!

name=". .. " attribute

The name attribute contains the name of the macro that will be expanded. Macros are defined and names using
the <al-macro> (<al-macro>) tag.

...arg="..." attributes

When macro arguments are simple strings, they can be specified as <al-expand> attributes by appending arg
to the argument name. So, to set an argument called title, you could add an titlearg attribute to the
<al-expand> tag.

>>> import albatross
>>> ctx = albatross.SimpleContext (’.”)
>>> albatross.Template(ctx, ’<magic>", ’’’
<al-macro name="pagelayout">
<title><al-usearg name="title"></title>
</al-macro>
777y to_html (ctx)
>>> albatross.Template (ctx, '<magic>’, '’
... <al-expand name="pagelayout" titlearg="Lumberjack" />’’'").to_html (ctx)
>>> ctx.flush_content ()
<title>Lumberjack</title>

If the macro argument is longer or needs to contain markup, the <al-setarg> (<al-setarg>) tag should be used
instead.

...argexpr="..." attributes

Macro arguments can also be derived by evaluating a python expression. Attributes of the <al-expand> tag
that end in argexpr are evaluated, and the base name becomes the macro argument of that name.

For example:
<al-expand name="pagelayout" titleargexpr="foo" />
is functionally equivilent to:

<al-expand name="pagelayout">
<al-setarg name="title"><al-value expr="foo"></al-setarg>
</al-expand>

For a more complete example:

>>> import albatross

>>> ctx = albatross.SimpleContext (’.”)

>>> ctx.locals.title = 'Lumberjack’

>>> albatross.Template(ctx, '<magic>’, "'’
<al-macro name="pagelayout">
<title><al-usearg name="title"></title>
</al-macro>
"7y to_html (ctx)

8.5. Macro Processing 125

Albatross Documentation, Release 1.40

>>> albatross.Template(ctx, '<magic>’, "'’
<al-expand name="pagelayout" titleargexpr="title" />’’’) .to_html (ctx)
>>> ctx.flush_content ()
<title>Lumberjack</title>
>>> albatross.Template(ctx, ’<magic>", ’’’
<al-expand name="pagelayout">
<al-setarg name="title"><al-value expr="title"></al-setarg>
</al-expand>’'"") .to_html (ctx)
>>> ctx.flush_content ()
<title>Lumberjack</title>

8.5.5 <al-setarg>

The <al-setarg> tag is used pass content to a macro. All content enclosed by the tag will be passed as an
argument to the macro named by the parent <al-expand> (<al-expand>) tag.

The <al-setarg> tag is normally used to pass content to macros that define named arguments, but can also be
used to enclose the unnamed argument.

>>> import albatross

>>> ctx = albatross.SimpleContext (’.”)

>>> albatross.Template (ctx, ’<magic>", 7’7’
<al-macro name="title">
<title><al-usearg></title>
</al-macro>
777y cto_html (ctx)

>>> albatross.Template(ctx, '<magic>’, "'’
<al-expand name="title">
<al-setarg>Lumberjack</al-setarg>
</al-expand>’"'") .to_html (ctx)

>>> ctx.flush_content ()

<title>Lumberjack</title>

>>> albatross.Template(ctx, ’<magic>", ’’’
<al-expand name="title">
Lumberjack

... </al-expand>'’") .to_html (ctx)

>>> ctx.flush_content ()

<title>Lumberjack

</title>

name="..." attribute

The name attribute is used to identify the named macro argument that will receive the enclosed content.

126

Chapter 8. Templates Reference

CHAPTER
NINE

DEVELOPING CUSTOM TAGS

In complex applications you may encounter presentation problems which the standard collection of tags cannot
easily solve. Albatross allows you to register additional tags, which are then available for use in your templates.
Custom tags are named with an alx— prefix to distinguish them from standard al- tags.

Custom tags should subclass either EmptyTag or EnclosingTag, and have a name class attribute. The name
should start with alx— and contain only letters, numbers and the underscore character.

Custom tags that produce form inputs need to register the names of those inputs with the NameRecorderMixin
via the input_add () method. For more information, see section NameRecorderMixin, NameRecorderMixin in
the Mixin Class Reference.

The following is a simple calendar tag which formats a single month like the unix cal(1) program.

import time
import calendar
import albatross

class Calendar (albatross.EmptyTag) :
name = "alx-calendar’

def to_html (self, ctx):

year = self.get_attrib(’year’)

if year is not None:
year = ctx.eval_expr (year)

month = self.get_attrib ('month’)

if month is not None:
month = ctx.eval_expr (month)

if month is None or year is None:
now = time.localtime (time.time())
if year is None:

year = nowl[0]
if month is None:
month = now[1]
ctx.write_content (' <table>\n’)
ctx.write_content (' <tr align="center"><td colspan="7"> </td></tr>\n’ \
% (calendar.month_name[month], year))
14

ctx.write_content (' <tr>")
for i in range(7):

ctx.write_content (/ <td>%s</td>" \

% calendar.day_abbr[(i + 6) % 7]1[:2])

ctx.write_content (' </tr>\n’)
calendar.setfirstweekday (6)
for r in calendar.monthcalendar (year, month):

ctx.write_content ('<tr align="right">")

for i in range(7):

if r[i]:

127

Albatross Documentation, Release 1.40

ctx.write_content (' <td>%s</td>" % r[i])
else:
ctx.write_content (' <td></td>")
ctx.write_content (' </tr>\n’)
ctx.write_content (' </table>\n’)

To use the tag in your application you must make the class available to the execution context. If you are using an
Albatross application object you can do this by passing the class to the register_tagclasses () method of
the application object.

from albatross import SimpleApp

app = SimpleApp('ext.py’, ’'.’, ’'start’)
app.register_tagclasses (Calendar)

All Albatross application classes inherit from the ResourceMixin in the albatross.context module.
Execution contexts which are used with application objects inherit from the AppContext class from the
albatross.app module which automatically retrieves all resources from the parent application object.

If you are using the SimpleContext class for your execution context then you will need to call the
register_tagclasses () method of the execution context immediately after construction.

The following is an example template file which uses the <alx—-calendar> tag.

<html>
<head><title>Calendar for <al-value expr="year"></title></head>
<body>
<hl>Calendar for <al-value expr="year"></hl>
<table cellpadding="10">
<al-for iter="r" expr="range(l,13)" cols="3" flow="across">
<tr valign="top">
<al-for iter="m" expr="r.value()">
<td><alx-calendar month="m.value ()" year="year"></td>
</al-for>
</tr>
</al-for>
</table>
</body>
</html>

A complete program which uses this extension tag and template file can be found in the samples/extension
directory. Use the install.py script to install the sample.

cd samples/extension
python install.py

The implementation of the standard tags also makes a good reference when writing custom tags. All standard tags
are defined in albatross.tags.

9.1 albatross.template — Base classes for implementing tags

The module contains the following classes which are intended to be used in implementing custom tags.

class Tag (ctx, filename, line_num, attribs)
This is the base class upon which all tags are implemented. You are unlikely to ever subclass this directly.
The EmptyTag and EnclosingTag classes inherit from this class.

class EmptyTag (ctx, filename, line_num, attribs)
Use this class as a subclass for all tags which do not require a closing tag and therefore do not enclose
content. Examples of standard HTML tags which do not enclose content are
 and <HR>.

128 Chapter 9. Developing Custom Tags

Albatross Documentation, Release 1.40

class EnclosingTag (ctx, filename, line_num, attribs)
Use this class as a subclass for all tags which enclose content. Examples of standard HTML tags which
enclose content are <BODY> and <TABLE>.

class Text (text)
A simple wrapper around the string passed in the fext constructor argument which passes that string to the
to_html () method when the object is converted to HTML.

class Content ()
A simple wrapper around a list which calls the to_html () method of all list elements when the object is
converted to HTML.

9.1.1 Tag Objects

raise_error (msg)
Raises a TemplateError exception using the string in the msg argument.

has_attrib (name)
Returns TRUE if the attribute specified in the name argument was defined for the tag. All attribute names
are converted to lower case by the template parser.

assert_has_attrib (name)
If the attribute specified in the name argument is not defined for the tag a TemplateError exception will
be raised.

assert_any_attrib (*names)
If none of the attributes specified by the arguments are defined for the tag a TemplateError exception
will be raised.

get_attrib (name, [default ‘‘= None‘‘])
Retrieves the value of the attribute specified in the name argument.

set_attrib (name, value)
Sets the value of the attribute named in the name argument to the value in the value argument.

set_attrib_order (order)
Defines the order that the tag attributes will be written during conversion to HTML. The template parser
captures the attribute sequence from the template file then calls this method.

attrib_items ()
Returns a list of attribute name, value tuples which are defined for the tag.

write_attribs_except (ctx, [...])
Sends all tag attributes to the write_content () method of the execution context in the czx argument.
Any attributes named in additional arguments will not be written.

9.1.2 EmptyTag Objects

has_content ()
Returns 0 to inform the template parser that the tag does not enclose content.

to_html (ctx)
The template interpreter calls this method to convert the tag to HTML for the execution context in the ctx
argument. The default implementation does nothing.

You must override this method in your tag class to perform all actions which are necessary to “execute” the
tag.

9.1.3 EnclosingTag Objects

content
An instance of the Content class which is created during the constructor.

9.1. albatross.template — Base classes for implementing tags 129

Albatross Documentation, Release 1.40

has_content ()
Returns 1 to inform the template parser that the tag encloses content.

append (item)
Called by the template parser to append the content in the itern argument to the tag. The method implemen-
tation simply passes item to the append () method of the content member.

You should override this method if you need to maintain multiple content lists within your tag.

to_html (ctx)
The template interpreter calls this method to convert the tag to HTML for the execution context in the ctx
argument. The default implementation passes ctx to the the t o_html () method of the content member.

You must override this method in your tag class to perform all actions which are necessary to “execute” the
tag.

9.1.4 Text Objects

to_html (ctx)
Sends the wrapped text to the write_content () method of the execution context in the ctx argument.
You should not ever need to subclass these objects.

9.1.5 Content Objects

append (item)
Appends the value in the itern argument to the internal Python list.

to_html (ctx)
Sequentially invokes the to_html () method of every item in the internal Python list passing the ctx
argument.

130 Chapter 9. Developing Custom Tags

CHAPTER
TEN

MIXIN CLASS REFERENCE

Most of Albatross exists as a collection of plug compatible mixin classes which you select from to define the way
your application should behave and how it will be deployed. Figure Toolkit Components shows the organisation
of the component types in the toolkit.

Templating
| Tags | | Templates |

Template Execution

| ResourceMixin | | ExecuteMixin | | TemplateLoaderMixin |

| RecorderMixin | | NamespaceMixin | | SessionContextMixin |
Application Model

| PageMixin | | PickleSignMixin | | SessionAppMixin |
Your Application

| Request | | Application | | ExecutionContext |

Figure 10.1: Toolkit Components

The divisions in the diagram represent conceptually different functional areas within the toolkit.

Templating This layer provides the Albatross templating functionality. Template classes make use of the methods
defined in the next layer down to access application functionality and data.

Classes in this layer are defined in the albatross.template and albatross.tags modules.

Template Execution An execution context suitable for interpreting template files is constructed by combining
one mixin of each type from this layer.

Application Model Execution contexts which subclass a PageMixin class in addition to the mixins from the
above layer are suitable for use in Albatross applications. The PageMixin class controls how the appli-
cation locates code and template files for each page served by the application. The PickleSignMixin
class is responsible for modifying pickles which are sent to the browser to prevent or detect modification.

Your Application In this layer you will typically create your own application and execution context classes by
subclassing a prepared application class.

For the most part Albatross applications are independent of the method by which they are deployed. De-
pending upon which Request class you choose from this layer you can either deploy your application via
CGI, mod_python (http://www.modpython.org/), FastCGI (http://www.fastcgi.com/) or as a stand-alone
python HTTP server.

Wherever possible the Albatross mixin classes use member names which begin with double underscore to trigger
Python name mangling. This protects your classes from having member name clashes with private members of

131

http://www.modpython.org/
http://www.fastcgi.com/

Albatross Documentation, Release 1.40

the mixin classes. Any member names which are not mangled are intended to be accessed in your application
code.

10.1 ResourceMixin Class

Albatross only supplies one class for this function; the ResourceMixin class. This mixin manages application
resources which which do not change regardless of context. The resources managed are tag classes, HTML
macros, and HTML lookup tables.

The SimpleContext execution context class subclasses the ResourceMixin class. During the constructor
it registers all of the standard Albatross tags. As HTML templates are executed the macros and lookup tables in
those templates are registered.

All standard Albatross application classes inherit from the Application class which in turn subclasses the
ResourceMixin class. During the application class constructor all of the standard Albatross tags are registered.
The AppContext class which is subclassed by all Albatross application execution context classes proxies all
HTML macro and lookup table methods and directs them to the application object.

__init__ ()
When you inherit from the ResourceMixin class you must call this constructor to initialise the internal
variables.

get_macro (name)
Returns the macro previously registered by the name in the name argument. If no such macro exists None
is returned.

register_macro (name, macro)
Registers the HTML macro in the macro argument under the name in the name argument.

get_lookup (name)
Returns the lookup table previously registered by the name in the name argument. If no such lookup exists
None is returned.

register_lookup (name, lookup)
Registers the HTML lookup table in the lookup argument under the name in the name argument.

discard_file_resources (filename)
Discards macros and lookups loaded from filename. This is called prior to reloading a template.

get_tagclass (name)
Returns the tag class in which the name member matches the name in the name argument. If no such tag
class exists None is returned.

register_tagclasses(...)
Registers one or more tag classes indexing them by the value in the name member of each class.

10.2 ExecuteMixin Class

Albatross only supplies one class for this function; the ExecuteMixin class. This mixin provides a “virtual
machine” which is used to execute HTML template files.

All standard Albatross execution context classes inherit from this class.

__init__ ()
When you inherit from the ExecuteMixin class you must call this constructor to initialise the internal
variables.

get_macro_arg (name)
Retrieves a macro argument from the macro execution stack. The stack is searched from the most recently
pushed dictionary for an argument keyed by name. If no argument is found a MacroError exception is
raised.

132 Chapter 10. Mixin Class Reference

Albatross Documentation, Release 1.40

push_macro_args (dict)
Pushes a dictionary of macro arguments onto the macro execution stack.

pop_macro_args ()
Pops the most recently pushed dictionary of macro arguments from the macro execution stack.

push_content_trap ()
Saves accumulated content on the trap stack and then resets the content list.

pop_content_trap ()
Joins all parts on the content list and returns the result. Sets the content list to the value popped off the trap
stack.

The content trap is useful for performing out-of-order execution of template text. The <al-option> tag
makes use of the content trap.

write_content (data)
Appends the content in data to the content list.

flush content ()
Does nothing if a content trap stack is in effect, otherwise it joins all parts in the content list and sends it to
the browser viathe send_content () method. The content list is then reset viathe reset_content ()
method.

flush html ()
This is an alias for f1lush_content ().

send_content (data)
Sends the content passed in the data argument to standard output. This is overridden in the AppContext
class to redirect data to the write_content () method of the application referenced in the app member.

reset_content ()
Sets the content list to an empty list and clears the content trap stack.

10.3 ResponseMixin Class

The ResponseMixin class provides functionality to manage the delivery of the application response to the
browser. The class maintains headers in a case insensitive ordered dictionary that ensures the headers are sent to
the browser in the same sequence as they are set (via set_header () or add_header ()).

The class automatically sends the headers to the browser when the first content is sent. Any attempt to modify or
send headers after they have been sent will raise an ApplicationError exception.

All Albatross execution context classes except for SimpleContext inherit from this class.

__init__ ()
When you inherit from the ResponseMixin class you must call this constructor to initialise the internal
variables.

get_header (name)
Returns a list of values of the name header from the internal store. If the header does not exist then None is
returned.

set_header (name, value)
Sets the value of the name header to value in the internal store, replacing any existing headers of the same
name.

If headers have already been sent to the browser then an ApplicationError exception will be raised.

add_header (name, value)
Sets the value of the name header to value in the internal store, appending the new header immediately after
any existing headers of the same name.

If headers have already been sent to the browser then an ApplicationError exception will be raised.

10.3. ResponseMixin Class 133

Albatross Documentation, Release 1.40

del_ header (name)
Removes the name header from the internal store.

If headers have already been sent to the browser then an ApplicationError exception will be raised.

write headers ()
Writes all headers in ascending sequence to the browser. Each header is sent via the Request object
write_header () method. At the end of headers the Request object end_headers () method is
called.

If headers have already been sent to the browser then an ApplicationError exception will be raised.

send_content (data)
Sends the content in data to the browser via the Request object write_content () method.

If headers have not already been delivered to the browser then the write_headers () method is called
before the data is written.

send redirect (loc)
If a cookie header has been set it is sent to the browser then the redirect () method of the request
member is called and the result is returned.

10.4 TemplateLoaderMixin Classes

This mixin is responsible for loading template files. Albatross supplies two classes; TemplateLoaderMixin
and CachingTemplateLoaderMixin.

10.4.1 TemplateLoaderMixin

The TemplateLoaderMixin class is a simplistic loader which performs no caching.

__dinit__ (base_dir)
When you inherit from the TemplateLoaderMixin class you must call the constructor to define the
root directory where template files will be loaded in the base_dir argument.

load template (name)
Load and return the parsed template file specified in the name argument. The path to the template file is
constructed by performing os.path. join () on the base_dir specified in the constructor and the name
argument.

If there is an error reading the template a TemplateLoadError will be raised.
The class remembers the names of all loaded templates.

load_template_once (name)
Returns None if the template specified in the name argument has been previously loaded. If not previously
loaded it is loaded via the 1oad_template () method and returned.

10.4.2 CachingTemplateLoaderMixin

The CachingTemplatelLoaderMixin class caches loaded templates to and only reloads them if they have
been modified since they were last loaded.

__init__ (base_dir)
When you inherit from the CachingTemplateLoaderMixin class you must call the constructor to
define the root directory where template files will be loaded in the base_dir argument.

load_template (name)
Return the parsed template file specified in the name argument. The path to the template file is constructed
by performing os.path. join () on the base_dir specified in the constructor and the name argument.

If there is an error reading the template a TemplateLoadError will be raised.

134 Chapter 10. Mixin Class Reference

Albatross Documentation, Release 1.40

If the template has been previously loaded it will only be reloaded if it has been modified since last load.

load_template_once (name)
Call the 1oad_template () method and return the template if it is either loaded for the first time or
reloaded, else return None.

10.5 RecorderMixin Classes

This mixin is passed form and input field recording messages as <al-form>, <al-input>,
<al-select>, and <al-a> tags are executed. Albatross supplies two classes; StubRecorderMixin and
NameRecorderMixin.

10.5.1 StubRecorderMixin

The StubRecorderMixin class ignores all form events.

form open ()
Does nothing.

form_close ()
Does nothing.

input_add (itype, name, [value ‘‘= None‘‘])
Does nothing.

merge_request ()
Merges request fields into ctx . locals.

10.5.2 NameRecorderMixin

The NameRecorderMixin class records details of all input fields used by a form. When the form element is
closed, a hidden field named __albform__ containing these details is added to the form.

When processing a request, the merge_request () method only merges fields with ctx.locals when they
match the details found in the submitted __albform__ field.

__dinit__ ()
When you inherit from the NameRecorderMixin class you must call the constructor.

form_open ()
Called when the <al-form> tag is opened.

form_close ()
Called just before the <al-form> tag is closed. A hidden field named __albform__ is written to the
output.

input_add (itype, name, [value ‘= None ‘], [return_list ‘= 0‘‘])
Called when an <al-input> tag is executed. The itype argument contains the type attribute from the
input tag, name contains the name tag attribute, and value contains the value of the input field if it is known
and relevant. The return_list argument indicates the presence of the 11 st attribute on the input tag.

As fields are added to each form the value of the refurn_list argument is checked against any previous setting
of the argument for the same field name. The argument value is also checked against whether or not there
are multiple instances of the field name. An detected discrepancy between the argument value and actual
fields will raise a ApplicationError exception.

merge_request ()
Retrieves the __albform___ value from the browser request decodes it and then merges the browser re-
quest into the local namespace accordingly.

10.5. RecorderMixin Classes 135

Albatross Documentation, Release 1.40

If an input field has been flagged to return a list (via the 1ist tag attribute) then the method will create a
listin ctx.locals for the field regardless of the number of values sent by the browser. An empty list is
created when the field is missing from the browser request.

Request fields not listed in __albform___ are ignored.

10.6 NamespaceMixin Class

Albatross only supplies one class for this function; the NamespaceMixin class. This mixin provides a local
and global namespace for evaluating expressions embedded in HTML template files.

When the browser request is merged into the execution context the input field values are written to the local
namespace.

__init__ ()
When you inherit from the NamespaceMixin class you must call the constructor.

The global namespace for evaluating Python expressions in HTML templates is initialised as an empty
dictionary in the constructor.

locals
An empty object which is used for the local namespace for evaluating expressions in HTML templates. It
is initialised as an instance of an empty class in the constructor to allow values to simply be assigned to
attributes of this member.

Loading the session merges the session values into this member.

clear_locals ()
Resets the 1ocals member to an empty object.

set_globals (dict)
Sets the global namespace for evaluating expressions to the dict argument.

The SimpleContext class constructor automatically sets this to the globals of the function which invoked
the SimpleContext constructor.

The run_template () and run_template_once () methods of the AppContext calls this method
to set global namespace to the globals of the calling function.

eval_expr (expr)
Called by the template file interpreter to evaluate the embedded Python expression in the expr argument.

set_value (name, value)
Sets the local namespace attribute named in the name argument to the value in the value argument. If the
name argument begins with an underscore the method will raise a SecurityError exception.

This is used by the application merge_request () method to merge individual browser request fields
into the local namespace.

There is a special “backdoor” identifier format which which directs browser request fields to the
set_backdoor () method of ListIterator and TreeIterator objects. The backdoor identifiers
are generated by the <al-input> and <al-a> tags to implement sequence and tree browsing requests.

The method implements a parser which can handle names of the form:

name = identifier \| list-backdoor \| tree-backdoor

identifier n= identifier ((“.” identifier) \| (“[” number “]17))\=*

list-backdoor
tree-backdoor

operation “,” iter
operation “,” iter “,” alias

merge_vars (...)
This method merges request fields matching a prefix given in the argument list to the local namespace (via
the set_value () method described above).

136 Chapter 10. Mixin Class Reference

Albatross Documentation, Release 1.40

Normally, merging of request fields is automatic: either all request fields are copied
when StubRecorderMixin is used, or fields listed in __albform__ are copied when
NameRecorderMixin is used. However in cases where NameRecorderMixin is used and no
__albform__ field is present, request merging does not occur, and this method is needed to allow the
application to explicitly request fields be merged.

make_alias (name)
Called to generate an alternate name for an object referenced in the alias attribute of an Albatross tag.

9

The method resolves the name argument up to the last “.” and then calls the albatross_alias ()
method of the resolved object. The resolved object is then entered into the local namespace and the session
using the name returned by albatross_alias ().

The return value is a new name by combining the name returned by albatross_alias () with the part

T3l

of the original name following and including the last .

Refer to the <al-input> documentation in the <al-input> section for an explanation of why this method
exists.

get_value (name)
Retrieves the value identified by the name argument from the local namespace. If the named value does not
exist then None is returned.

has_value (name)
Returns whether or not the value named in the name attribute exists in the local namespace.

has_values(...)
Returns TRUE only if values named in the argument list exist in the local namespace.

10.7 SessionContextMixin Classes

This mixin is used to manage the encoding and decoding of session data. Albatross supplies a number of classes
for use in the execution context; StubSessionMixin, SessionBase, HiddenFieldSessionMixin,
SessionServerContextMixin, and SessionFileContextMixin. The SessionBase class pro-
vides base functionality for non-stub session classes.

Loading and storing of session data is usually performed by an application mixin.

The SessionServerAppMixin is designed to be used in the application object.

10.7.1 StubSessionMixin

The StubSessionMixin class ignores all session operations.

add_session_vars(...)
Does nothing.

del session_vars(...)
Does nothing.

encode_session ()
Does nothing.

load_session ()
Does nothing.

save_session ()
Does nothing.

remove_session ()
Does nothing.

set_save_session (flag)
Does nothing.

10.7. SessionContextMixin Classes 137

Albatross Documentation, Release 1.40

should_save_session|()
Returns 0.

10.7.2 SessionBase
The SessionBase class provides base session handling functionality which is used by all standard Albatross
execution context session mixin classes.

init__ ()
When you inherit from the SessionBase class you must call this constructor.

The class maintains a dictionary of all names from the execution context local namespace which belong in
the session. This dictionary is restored along with the session when the session is decoded.

add_session_vars(...)
Adds all listed names to the session dictionary. The named variables must exist in the 1ocals member or
a SessionError will be raised.

The names can optionally be supplied as a list or tuple of names.

default_session_var (name, value)
Adds a name to the session directory. Sets a value in the local namespace if the name is not already in the
local namespace.

del_ session_vars(...)
Deletes all listed names from the session dictionary.

The names can optionally be supplied as a list or tuple of names.

session_vars ()
Returns a list of the names that are currently in the session.

remove_session ()
Deletes all names from the session dictionary and clears all values from the local namespace via the
clear_locals () method.

decode_session (fext)
Performs cPickle.loads () toretrieve a dictionary of session values. The dictionary is merged into the
session local namespace. Adds the keys of the dictionary to the session dictionary.

Note that an import hook is used around the cPickle.loads () to redirect requests to load page mod-
ules to the app.load_page_module () method. This allows the pickler to find classes which are
defined in application page modules. Whether a module is a page module is determined by calling the
app.is_page_module () method, passing the module name.

encode_session ()
Builds a dictionary by extracting all local namespace values which are listed in the session dictionary. A test
pickle is performed on each value and any unpickleable value is discarded and an error message is written
to sys.stderr.

The dictionary is then passed to cPickle.dumps () and the result is returned.

set_save_session (flag)
Sets the flag which controls whether the session will be saved at the end of request processing. By default
the internal flag is TRUE which means the session will be saved.

should_save_session()
Returns the flag which controls whether the session will be saved at the end of request processing.

10.7.3 HiddenFieldSessionMixin

Saves session state to a hidden field named __albstate___ at the end of every form produced by <al-form>
tags.

138 Chapter 10. Mixin Class Reference

Albatross Documentation, Release 1.40

Inherits from the SessionBase class so you must call the constructor if you subclass this class.

encode_session ()

Extends the base <class encode_session/() method to zlib.compress () and
base64.encodestring () the result. This makes the session data suitable for placing in a hid-
den field in the HTML.

load_session ()
This is called from the Application class load_session () method. The session state is retrieved
from the browser request, decoded and decompressed then passed to the decode_session () method.

save_session ()
This is called from the Application class save_session () method at the end of the request process-
ing sequence. The method does nothing because the session state is saved in hidden fields in the HTML.

form close ()
Called just before the <al—-form> tag is closed. If the session is flagged to be saved a hidden field named
__albstate__ is written to the output.

Note that this method is also present in the RecorderMixin, so if you inherit from the
HiddenFieldSessionMixin class you must define a form_close () method in the derived class
which calls this method in both of the super classes.

10.7.4 SessionServerContextMixin

This class works in concert with the SessionServerAppMixin application mixin class to store session data
in the Albatross session server. All management of session data storage is performed by the application class.

Inherits from the SessionBase class so you must call the constructor if you subclass this class.

__init__ ()
When you inherit from the SessionServerContextMixin class you must call this constructor.

sesid()
Returns the session id.

load_session ()
This is usually called from the Application class load_session () method. Retrieves the session id
and then either retrieves an existing session or creates a new session via the application object.

If an existing session is retrieved it is passed to base64.decodestring() and
zlib.decompress () then passed to the decode_session () method (inherited from the su-
perclass). If an exception is raised during decode_session () then the session will be deleted from the
server and a new session will be created via the application object new_session () method.

save_session ()
This is called from the Application class save_session () method at the end of the request pro-
cessing sequence. If the session save flag has been cleared via the set_save_session () method then
the session is not saved.

Before saving a session the method «calls the superclass encode_session () then calls
zlib.compress () and base64.encodestring () to convert the session to plain text which is
passed to the put__session () application method to save the session.

remove_session ()
This is called from the Application class remove_session () method. The method calls the super-
class remove_session () then calls the del_session () application method to remove the session
at the server.

10.7.5 SessionFileContextMixin

This class works in concert with the SessionFileAppMixin application mixin class to store session data in
the local file-system. All management of session data storage is performed by the application class.

10.7. SessionContextMixin Classes 139

Albatross Documentation, Release 1.40

Inherits from the SessionBase class so you must call the constructor if you subclass this class.

__init__ ()
When you inherit from the SessionFileContextMixin class you must call this constructor.

sesid ()
Returns the session id.

load_session ()
This is usually called from the Application class load_session () method. Retrieves the session id
and then either retrieves an existing session or creates a new session via the application object.

If an existing session is retrieved it is passed to the decode_session () method (inherited from the
superclass). If an exception is raised during decode_session () then the session will be deleted from
the server and a new session will be created via the application object new_session () method.

save_session ()
This is called from the Application class save_session () method at the end of the request pro-
cessing sequence. If the session save flag has been cleared via the set_save_session () method then
the session is not saved.

Before saving a session the method calls the superclass encode_session () then calls the
put_session () application method to save the session.

remove_session ()
This is called from the Application class remove_session () method. The method calls the super-
class remove_session () then calls the del_session () application method to remove the session
at the server.

10.7.6 BranchingSessionMixin

A persistent problem with server-side sessions is the browser state getting out of synchronisation with the appli-
cation state. This occurs when the browser “back’ button is used, or when a form is reloaded (this is logically
equivilent to a “back” then a resubmission of the old form state).

One solution to this problem is to maintain a server-side session for each interaction with the browser, rather than
a single session per client that is recycled for each interaction. A unique session identifier is stored in a hidden
form field, which allows us to retrieve the appropriate version of the session on form submission (the hidden field
value is rolled back with the browser state when the “back” button is used, unlike a cookie). This class provides
a drop-in replacement for the SessionServerContextMixin and implements this session-per-interaction
behaviour.

__init__ ()
When you inherit from the BranchingSessionMixin class you must call this constructor.

sesid ()
Returns the session id.

load_session ()
This is usually called from the Application class load_session () method. Retrieves the session id
and then either retrieves an existing session or creates a new session via the application object.

If an existing session is retrieved it is passed to the decode_session () method (inherited from the
superclass). If an exception is raised during decode_session () then the session will be deleted from
the server and a new session will be created via the application object new_session () method.

save_session ()
This is called from the Application class save_session () method at the end of the request pro-
cessing sequence. If the session save flag has been cleared via the set_save_session () method then
the session is not saved.

Before saving a session the method calls the superclass encode_session () then calls the
put_session () application method to save the session.

140 Chapter 10. Mixin Class Reference

Albatross Documentation, Release 1.40

remove_session ()
This is called from the Application class remove_session () method. The method calls the super-
class remove_session () then calls the del_session () application method to remove the session
at the server.

form close ()
Called just before the <al-form> tag is closed. If the session is flagged to be saved a hidden field named
__albsessid___ containing the session identifier is written to the output.

Note that this method is also present in the RecorderMixin, so if you inherit from the
BranchingSessionMixin class you mustdefinea form_close () method in the derived class which
calls this method in both of the super classes.

10.8 SessionAppMixin Classes

10.8.1 SessionServerAppMixin

The application mixin works in concert with the SessionServerContextMixin execution context method
to store sessions in the Albatross session server.

Whenever there are problems communicating with the session server the class raises a SessionServerError
exception, which is a subclass of SessionError. Unless you have a reason to do otherwise, catch
SessionError rather than SessionServerError, as this allows other Session classes to be substituted
with minimal change.

__init__ (appid, [server ‘= 'localhost’*‘], [port “‘= 34343°‘], [age ‘= 1800°‘])
When you inherit from the SessionServerAppMixin class you must call this constructor.

The appid argument specifies the name of the cookie attribute which is used to store the session id. This
uniquely identifies the application at the web server. Multiple applications can share sessions by defining
the same value in this argument.

The server and port arguments specify the location of the Albatross session server. By using a session server
you can have a number of web serving machines which transparently share session data.

The age argument specifies how long (in seconds) an idle session will be stored at the server before it is
discarded.

A connection to the session server is established. The connection will be kept open for the lifetime of the
application object.

ses_appid()
Returns the appid argument which was passed to the constructor.

get_session (sesid)
Returns the session identified by sesid argument and the appid passed to the constructor. If no such session
exists None is returned.

new_session ()
Returns a new session id for the appid passed to the constructor.

put_session (sesid, text)
Saves the text argument as session data for the session identified by sesid argument and the appid passed to
the constructor.

del_session (sesid)
Removes the session identified by sesid argument and the appid passed to the constructor.

10.8.2 SessionFileAppMixin

The application mixin works in concert with the SessionFileContextMixin execution context method to
store sessions in the local file-system.

10.8. SessionAppMixin Classes 141

Albatross Documentation, Release 1.40

Whenever there are problems reading or writing sessions from or to disk, the class raises a SessionFileError
exception, which is a subclass of SessionError. Unless you have a reason to do otherwise, catch
SessionError rather than SessionFileError, as this allows other Session classes to be substituted with
minimal change.

__init__ (appid, session_dir)
When you inherit from the SessionFileAppMixin class you must call this constructor.

The appid argument specifies the name of the cookie attribute which is used to store the session id. This
uniquely identifies the application at the web server. Multiple applications can share sessions by defining
the same value in this argument.

The session_dir argument specifies the location on the local file-system in which this application’s sessions
will be stored.

The directory should not be publicly readable, as the session file names are the session id’s (knowing a
session id allows an attacker to steal that session).

Sessions recorded via this class are not automatically aged. An external process will be required to clean
orphaned sessions from the session directory (for example, by removing any file that has not been accessed
in the last two hours).

ses_appid()
Returns the appid argument which was passed to the constructor.

get_session (sesid)
Returns the session identified by sesid argument and the appid passed to the constructor. If no such session
exists None is returned.

new_session ()
Returns a new session id for the appid passed to the constructor.

Note that if the session_dir passed to the constructor does not already exist, this method will attempt to
create it.

put_session (sesid, text)
Saves the text argument as session data for the session identified by sesid argument and the appid passed to
the constructor.

del_session (sesid)
Removes the session identified by sesid argument and the appid passed to the constructor.

10.9 PickleSignMixin Classes

This is mixed with the application class to sign or modify pickles before sending them to the browser and to undo
and check that modification on the return trip. When processing modified pickles returned from the browser the
class discards pickles which do not pass the security check.

There is only one mixin supplied for this function; the PickleSignMixin class. Pickle strings are combined
with the secret string which was passed to the application constructor as the secret argument using the HMAC-
SHAT1 algorithm. The resulting signature is then prepended to the pickle. On the return trip the HMAC-SHA1
sign is compared with the result of the signing process on the pickle returned from the browser. If the two signs
are not the same, the pickle is discarded.

The process does not prevent users from seeing the contents of a pickle, rather it provides an assurance of its
authenticity.

The mixin has the following interface.

__init__ (secret)
When you inherit from the PickleSignMixin class you must call this constructor.

The secret argument is the secret key which is combined with the pickle to produces the HMAC-SHA1
signature.

142 Chapter 10. Mixin Class Reference

Albatross Documentation, Release 1.40

pickle_sign (rext)
Generates an HMAC-SHA signed copy of the text argument, using the secret constructor argument as key.

pickle_unsign (fext)
Compares the HMAC-SHAL signature on the given text, and if valid, returns the unsigned text. If the
signature does not match, a SecurityError exception is raised.

10.10 PageMixin Classes

The choice of mixin for this functionality determines how Albatross will locate the code to process the browser
request and display the response for each page. Albatross supplies three classes; PageModuleMixin,
RandomPageModuleMixin, and PageObjectMixin.

10.10.1 PageModuleMixin

This class uses a separate Python module for each page in the application. This scales very well at runtime because
at most two modules will be loaded for each request; one to process the browser request, and possibly another
to display the response. Page modules are cached for further efficiency. The class is designed to be used where
the application controls the sequence of pages seen in a browser session so the start page is also specified in the
constructor.

Application page modules are loaded from a base directory which is specified by the constructor base_dir ar-
gument. The current application page is identified by the path to the page module relative to the module base
directory. Page identifiers consist of an optional path component followed by a module name without extension.
For example "1login", "user/list", "home-page/default™".

Page modules are loaded into a dummy __alpage__ namespace to avoid conflicts with python modules, so
loading "user/1ist" actually imports the module as __alpage___.user.list.

To support pickling of instances defined in a page module, a dummy hierarchy of modules needs to be
created. In the _ alpage_ .user.list case mentioned above, a temporary dummy module called
__alpage__.user isregistered. This will be replaced by the real user module later if it is loaded.

Note also that the SessionBase mixin uses an import hook while decoding the session to redirects attempts to
load page modules (those that being with __alpage__)to the load_page_module () method.

Page modules handled by this mixin have the following interface:

page_enter (ctx, [...])
If this function is present in the new page module it will be called whenever your application code calls the
execution context set_page () method. For application types which define a start page this method is
called in the start page when a new session is created.

The ctx argument contains the execution context. Any extra arguments which are passed to the
set_page () method are passed as optional extra arguments to this function.

page_leave (ctx)
If this function is present in the current page module it will be called whenever your application code
changes to another page by calling the execution context set_page () method.

The ctx argument contains the execution context.

page_process (cix)
If this function is present in the page module it will be called when the application object executes the
process_request () method. This occurs if the browser request was successfully validated.

Refer to the Albatross Application Model section for an overview of the application processing sequence.

page_display (ctx)
This is the only mandatory page module function. The application object calls this function when it executes
the display_response () method as the final step before saving the browser session.

Refer to the Albatross Application Model section for an overview of the application processing sequence.

10.10. PageMixin Classes 143

Albatross Documentation, Release 1.40

The PageModuleMixin class has the following interface.

__init__ (base_dir, start_page)
When you inherit from the PageModuleMixin class you must call this constructor.

The base_dir argument specifies the path of the root directory where page modules are loaded from. When
deploying your application as a CGI program you can specify a relative path from the location of the
application mainline. Apache sets the current directory to root so when using mod_python deployment
you will need to specify a path relative to the root.

The start_page argument is a page identifier which specifies the first page that new browser session will see.

module_path ()
Returns the base_dir which was passed to the constructor.

start_page ()
Returns the start_page which was passed to the constructor.

load page (ctx)
This method implements part of the standard application processing sequence. It is called immediately after
restoring the browser session. The ctx argument is the execution context for the current browser request.

If no current page is defined in ctx then the method will invoke ctx.set_page () passing the page
specified as the start_page argument to the application constructor.

The actual page module load is performed via the 1oad_page_module () method.
Refer to the Albatross Application Model section for an overview of the application processing sequence.

load_page_module (ctx, name)
Loads the page module identified by the name argument and saves a reference to the module in the page
member.

page_enter (ctx, args)
Called when your application code calls the execution context set_page () method. The ctx argument
is the execution context for the current browser request. The args argument is a tuple which contains all
optional extra arguments which were passed to the set_page () method.

The page module page_enter () function is called by this method.

page_leave (ctx)
Called before changing pages when your application code calls the execution context set_page ()
method. The czx argument is the execution context for the current browser request.

The page module page_leave () function is called by this method.

process_request (ctx)
This method implements part of the standard application processing sequence. It is called if the browser
request is successfully validated. The ctx argument is the execution context for the current browser request.

The page module page_process () function is called by this method.
Refer to the Albatross Application Model section for an overview of the application processing sequence.

display response (ctx)
This method implements part of the standard application processing sequence. It is called as the final stage
just before the session is saved. The czx argument is the execution context for the current browser request.

The page module page_display () function is called by this method.

Refer to section the Albatross Application Model section for an overview of the application processing
sequence.

10.10.2 RandomPageModuleMixin

This class inherits from the PageModuleMixin class. It redefines the way in which page modules are selected.

144 Chapter 10. Mixin Class Reference

Albatross Documentation, Release 1.40

Instead of the application calling the set_page () execution context method, the URL in the browser request
controls which page module is loaded and processed for each request.

Page module management is inherited from PageModuleMixin. The base_dir argument to the constructor
determines the root directory where modules are loaded from.

Page modules handled by this mixin have the following interface:

page_enter (cix)
If this function is present in the page module it will be called every time the page module is used for a
browser request.

The ctx argument contains the execution context.

page_process (ctx)
If this function is present in the page module it will be called when the application object executes the
process_request () method. This occurs if the browser request was successfully validated.

Refer to the Albatross Application Model section for an overview of the application processing sequence.

page_display (ctx)
This is the only mandatory page module function. The application object calls this function when it executes
the display_response () method as the final step before saving the browser session.

Refer to the Albatross Application Model section for an overview of the application processing sequence.
The RandomPageModuleMixin class has the following interface.

load_page (ctx)
This method implements part of the standard application processing sequence. It is called immediately after
restoring the browser session. The czx argument is the execution context for the current browser request.

The get_page_from_uri () method is called to determine the identifier of the page module that will
be loaded. The identifier is then passed to the 1oad_page_module () method (which is inherited from
PageModuleMixin).

Refer to the Albatross Application Model section for an overview of the application processing sequence.

get_page_from_uri (ctx, uri)
The method uses the ur lparse () function from the standard Python urlparse () module to extract the
path component from both the uri parameter and the value returned by the base_url () method (which
returns the base_url argument to the application constructor).

The path component of the base_url is then used to split the path component of the uri. Element one (first
split to the right of base_url) of the resulting string list is returned as the page identifier.

Override this method in your application if you wish to implement a your own scheme for mapping the
request onto a page identifier.

load badurl_template (ctx)
Called when your page template identified by the request URL does not exist. The ctx argument is the
execution context for the current browser request.

Override this method if you want to supply a different error page template.

page_enter (ctx)
Called as soon as the page module has been loaded. The czx argument is the execution context for the current
browser request.

The page module page_enter () function is called by this method if a page module was located by the
load_page () method.

process_request (ctx)
This method implements part of the standard application processing sequence. It is called if the browser
request is successfully validated. The czx argument is the execution context for the current browser request.

The page module page_process () function is called by this method if a page module was located by
the 1oad_page () method.

10.10. PageMixin Classes 145

Albatross Documentation, Release 1.40

Refer to the Albatross Application Model section for an overview of the application processing sequence.

display response (ctx)
This method implements part of the standard application processing sequence. It is called as the final stage
just before the session is saved. The czx argument is the execution context for the current browser request.

The page module page_display () function is called by this method if a page module was located by
the 1oad_page () method.

Refer to the Albatross Application Model section for an overview of the application processing sequence.

10.10.3 PageObjectMixin

This class is intended for applications which do not require a separate Python module for each page in the appli-
cation. Page processing is performed by a set of objects which the application registers with this class. The class
is designed to be used where the application controls the sequence of pages seen in a browser session so the start
page is specified in the constructor.

Application page objects must be registered before they can be used. Typically you will register the page objects
immediately after constructing your application object. Since the current application page is identified by an
internal value, any hashable pickleable value can be used as an identifier.

Page objects handled by this mixin have the following interface:

page_enter (ctx, [...])
If this method is present in the new page object it will be called whenever your application code changes
current the page by calling the execution context set_page () method. For application types which define
a start page this method is called in the start page when a new session is created.

The ctx argument contains the execution context. Any extra arguments which are passed to the
set_page () method are passed as optional extra arguments to this method.

page_leave (ctx, [...])
If this method is present in the old page object it will be called whenever your application code changes
current the page by calling the execution context set_page () method.

The ctx argument contains the execution context.

page_process (cix)
If this method is present in the page object it will be called when the application object executes the
process_request () method. This occurs if the browser request was successfully validated.

Refer to the Albatross Application Model section for an overview of the application processing sequence.

page_display (ctx)
This is the only mandatory page object function. The application object calls this method when it executes
the display_response () method as the final step before saving the browser session.

Refer to the Albatross Application Model section for an overview of the application processing sequence.
The PageObjectMixin class has the following interface.

__init__ (start_page)
When you inherit from the PageOb jectMixin class you must call this constructor.

The start_page argument is a page identifier which specifies the first page that new browser session will see.

module_path ()
Returns None.

start_page ()
Returns the start_page argument which was passed to the constructor.

register_page (name, obj)
You must call this method to register every page object in your application. The name argument defines
the page identifier which is used to select the page object specified in the obj argument. All pages must be
registered before they can be used.

146 Chapter 10. Mixin Class Reference

Albatross Documentation, Release 1.40

load_page (ctx)
This method implements part of the standard application processing sequence. It is called immediately after
restoring the browser session. The ctx argument is the execution context for the current browser request.

If no current page is defined in ctx then the method will invoke ctx.set_page () passing the page
specified as the start_page argument to the application constructor.

Refer to the Albatross Application Model section for an overview of the application processing sequence.

page_enter (ctx, args)
Called when your application code calls the execution context set_page () method. The ctx argument
is the execution context for the current browser request. The args argument is a tuple which contains all
optional extra arguments which were passed to the set_page () method.

The page object page_enter () method is called by this method.

page_leave (ctx)
Called before changing pages when your application code calls the execution context set_page ()
method. The ctx argument is the execution context for the current browser request.

The page object page_leave () method is called by this method.

process_request (ctx)
This method implements part of the standard application processing sequence. It is called if the browser
request is successfully validated. The czx argument is the execution context for the current browser request.

The page object page_process () method is called by this method.
Refer to the Albatross Application Model section for an overview of the application processing sequence.

display response (ctx)
This method implements part of the standard application processing sequence. It is called as the final stage
just before the session is saved. The czx argument is the execution context for the current browser request.

The page object page_display () method is called by this method.

Refer to the Albatross Application Model section for an overview of the application processing sequence.

10.11 Request Classes

The choice of Request class determines how you wish to deploy your application. Albatross supplies a number
of pre-built Request implementations suited to various deployment methods. These include:

Deployment Method Request Module

CaGl albatross.cgiapp
mod_python albatross.apacheapp
FastCGI_python albatross.fcgiapp
Stand-alone Python HTTP server | albatross.httpdapp

You can also develop your own Request class to deploy an Albatross application in other ways.

All Request classes implement the same interface. ~Much of this interface can be supplied by the
RequestBase mixin.

has_field (name)
Returns TRUE if the field identified by the name argument is present in the request.

field wvalue (name)
Return the value of the field identified by the name argument.

field file (name)
Returns an object that contains the value of a file input field.

field names ()
Return a list of all all fields names in the request.

10.11. Request Classes 147

Albatross Documentation, Release 1.40

get_uri ()
Return the URL which the browser used to perform the request.

get_servername ()
Return the name of the server (Apache ServerName setting).

get_header (name)
Return the value of the HTTP header identified in the name argument.

write_header (name, value)
Add a header named name with the value value to the response. This method should not be called once you
have started sending content to the browser.

end_headers ()

Signal to the Request object that header generation has finished and that you are ready to start sending
content.

redirect (loc)
Senda "301 Moved Permanently" response back to the browser.

write_ content (data)
Send data as part of the request response.

set_status (status)
Sets the HTTP status code of the response. Defaults to 200. For deployment methods based on the cgiapp
module, this value is used to derive the Status: header. The apacheapp module uses it to set the status
member of the mod_python request object.

status (num)
Return the saved value for the HTTP status code.

return_code ()
Returns a value which should be returned from the Application class run () method. For most de-
ployment methods, this is None, however the mod_python requires that mod_python.apache.OK
be returned if application emits any content. Your mod_python application should include code such as
this:

from albatross.apacheapp import Request

def handler (req):
return app.run(Request (req))

148 Chapter 10. Mixin Class Reference

CHAPTER
ELEVEN

PREPACKAGED APPLICATION AND
EXECUTION CONTEXT CLASSES

Figure 11.1: Albatross Classes

11.1 The simpleContext Execution Context

The SimpleContext class is provided for applications which only make use of the Albatross template func-
tionality. If you look at the implementation of the class you will note that it is constructed from a number of mixin

149

Albatross Documentation, Release 1.40

classes. Each of these classes implements some of the functionality required for interpreting Albatross templates.

Diagrammatically the SimpleContext class looks like this:

NamespaceMixin

+local s
+gl obal s

+_init__()
+cl ear _| ocal s()
+set _gl obal s(dict)

+eval _expr (expr) StubRecorderMixin

+set _val ue(nane, val ue) TemplateLoaderMixin

+nake_al i as(nane) +f or m open()

+get _val ue(nane) +__init__(base_dir) +f orm cl ose()

+has_val ue(nane) +l oad_t enpl at e(nane) +i nput _add(i type, nane, val ue=None, ret urn_| i st =0)

+has_val ues(...) +| oad_t enpl at e_once(nane) +mer ge_r equest ()

A A A
ExecuteMixin

+_init__() StubSessionMixin
+get _macr o_ar g(nane) ResourceMixin
+push_macro_args(dict) +add_session_vars(...)
+pop_macro_ar gs() +_init__() +del _session_vars(...)
+push_content _trap() +get _macr o(nanme) +encode_session()
+pop_content _trap() +r egi st er _nmcr o(nane, macr o) +l oad_sessi on()
+write_content(data) +get _| ookup(nane) +save_session()
+f | ush_content () +r egi st er _| ookup(nane, | ookup) +renove_sessi on()
+send_cont ent (dat a) +get _t agcl ass(nane) +set _save_session(fl ag)
+reset _content () +regi ster_tagcl asses(tags) +shoul d_save_sessi on()

7 7 i

SimpleContext

+__init__(tenplate_path)

Figure 11.2: The SimpleContext class

By implementing the execution context semantics in a collection of mixin classes Albatross allows you to change
semantics by substituting mixins which implement the same interface. This is very useful when using the Albatross
application objects.

Name spaceMixin This mixin provides a local namespace for evaluating the expressions embedded
in the expr tag attributes. Application code places values into the 1ocals member to make them
available for display by the template files.

You will probably always use this mixin in your execution context.

ExecuteMixin This mixin provides a sort of virtual machine which is required by the template file
interpreter. It maintains a macro argument stack for expanding macros, and it is used to accumulate
HTML produced by template execution.

You will probably always use this mixin in your execution context.

ResourceMixin This mixin provides a registry of template resources which only need to be de-
fined once. Specifically the class provides a dictionary of Python classes which implement template
file tags, a dictionary of template macros, and a dictionary of template lookup tables.

If you are using Albatross application functionality, you will almost certainly use this mixin in your
application class, not the execution context.

TemplateLoaderMixin This mixin is a very simple template file loader. You will almost cer-
tainly use the CachingTemplateLoaderMixin in your application object instead of this mixin
when you use the Albatross application objects.

StubRecorderMixin Albatross provides special versions of the standard HTML <input>,
<select>, and <form> tags. As these tags are converted to HTML they report back to the ex-
ecution context. Applications which do not need to record the contents of each form can use this
mixin to ignore the form record.

StubSessionMixin

150 Chapter 11. Prepackaged Application and Execution Context Classes

Albatross Documentation, Release 1.40

Albatross provides an application session. Applications which do not a session can use this mixin to

disable session functionality.

Collectively these classes provide all of the functionality which is required to execute Albatross templates. The
following table contains a list of all methods defined in the context.

Method

Mixin

add_session_vars (*names) ()

form _close ()
form_open ()

load_template (name) ()
load_template_once (name) ()

remove_session ()

clear_active_select () ExecuteMixin
clear_locals () NamespaceMixin
del_session_vars (xnames) () StubSessionMixin
discard_file_resources (filename) () ResourceMixin
encode_session () StubSessionMixin
eval_expr (expr) () NamespaceMixin
flush_content () ExecuteMixin
flush_html () ExecuteMixin

get_active_select () ExecuteMixin
get_lookup (name) () ResourceMixin
get_macro (name) () ResourceMixin
get_macro_arg(name) () ExecuteMixin
get_tagclass (name) () ResourceMixin
get_value (name) () NamespaceMixin
has_value (name) () NamespaceMixin
has_values (*names) () NamespaceMixin
input_add(itype, name, value, return_list) () StubRecorderMixin
load_session() StubSessionMixin

make_alias (name) () NamespaceMixin
merge_request () StubRecorderMixin
merge_vars (xvars) () NamespaceMixin
pop_content_trap () ExecuteMixin
pop_macro_args () ExecuteMixin
push_content_trap() ExecuteMixin
push_macro_args (args, defaults) () ExecuteMixin
register_lookup (name, lookup) () ResourceMixin
register_macro (name, macro) () ResourceMixin
register_tagclasses (xtags) () ResourceMixin

reset_content () ExecuteMixin
save_session () StubSessionMixin
send_content (data) () ExecuteMixin
set_active_select (select, value) () ExecuteMixin
set_globals (dict) () NamespaceMixin
set_save_session (flag) () StubSessionMixin
set_value (name, value) () NamespaceMixin
should_save_session () StubSessionMixin
write_content (data) () ExecuteMixin

StubSessionMixin

StubRecorderMixin
StubRecorderMixin

TemplatelLoaderMixin
TemplateLoaderMixin

StubSessionMixin

Looking inside the context module you will notice some mixin classes which provide alternatives for
some of the context functionality. The CachingTemplateLoaderMixin class can be used to replace
the TemplateLoaderMixin. Likewise the NameRecorderMixin class is a drop-in replacement for the
StubRecorderMixin class. These alternatives are used by some of the prepackaged application objects.

Although all of the template file examples in the Templates User Guide used the SimpleContext class as the
execution context, you are much more likely to use something derived from the AppContext class defined in

11.1. The simpleContext Execution Context 151

Albatross Documentation, Release 1.40

the app module. Since Albatross creates a new execution context to process each browser request, it makes sense
to manage tag classes, macros, and lookup tables somewhere other than in the execution context.

11.2 The AppContext Base Class

All execution contexts used by Albatross application classes are derived from the AppContext class. The class
acts as a proxy and redirects all ResourceMixin and TemplateLoader class methods to the application
object. This allows the application to cache resources so that they do not need to be defined for every request.

The class places very few assumptions about how you wish to structure and deploy your application and is suitable

as a base class for all application execution context classes.

NamespaceMixin

+l ocal s

+gl obal s

+_init_() ResponseMixin
+cl ear _| ocal s()

+set _gl obal s(dict) +__init__()

+eval _expr (expr)

+set _val ue(nane, val ue)
+make_al i as(name)

+get _val ue(nane)

+get _header (nane)

+set _header (nane, val ue)
+del _header (nane)
+write_headers()
+has_val ue(nane) +send_cont ent (dat a)
+has_val ues(...) +send_redirect (| oc)

i i

ExecuteMixin

+_init__()

+get _macr o_ar g(nane)
+push_macro_ar gs(dict)
+pop_macro_args()
+push_content _trap()
+pop_content _trap()
+write_content(data)
+f lush_content ()
+send_cont ent (dat a)
+reset _content ()

T

AppContext

+app

+r equest

+__init__(app)

+get _macr o(nane)

+r egi st er _macr o(name, macr o)
+get _| ookup(nane)

+r egi st er _| ookup(nane, | ookup)
+get _tagcl ass(nane)

+| oad_t enpl at e(nane)

+l oad_t enpl at e_once(name)
+run_t enpl at e(nane)
+run_t enpl at e_once(nane)
+cl ear _| ocal s()

+set _page(nane,...)
+push_page(nane, ...)
+pop_page()

+set _request (req)
+req_equal s(nane)
+base_url ()

+current _url ()

+absol ute_base_url ()
+redirect_url (loc)
+redirect(loc)

Figure 11.3: The AppContext class

The methods available in AppContext and the location of their definition are show below.

Method Mixin
absolute_base_url () AppContext
add_header (name, value) () ResponseMixin
base_url () AppContext
clear_active_select () ExecuteMixin
clear_locals () AppContext
current_url () AppContext
del_header (name) () ResponseMixin
eval_expr (expr) () NamespaceMixin
flush_content () ExecuteMixin
flush_html () ExecuteMixin
get_active_select () ExecuteMixin
get_header (name) () ResponseMixin

Continued on next page |

152 Chapter 11. Prepackaged Application and Execution Context Classes

Albatross Documentation, Release 1.40

Table 11.2 — continued from previous page

get_lookup (name) ()
get_macro (name) ()
get_macro_arg(name) ()
get_tagclass (name) ()
get_value (name) ()
has_value (name) ()
has_values (xnames) ()
load_template (name) ()
load_template_once (name) ()
make_alias (name) ()
merge_vars (xvars) ()
parsed_request_uri ()
pop_content_trap ()
pop_macro_args ()

pop_page (target_page) ()
push_content_trap ()
push_macro_args (args,
push_page (name, =xargs) ()
redirect (loc) ()
redirect_url (loc) ()
register_lookup (name,
register_macro (name,
reqg_equals (name) ()
reset_content ()
run_template (name) ()
run_template_once (name) ()
send_content (data) ()
send_redirect (loc) ()
set_active_select (select,
set_globals(dict) ()
set_header (name, value) ()
set_page (name, =*args) ()
set_request (req) ()
set_value (name, value) ()
write_content (data) ()
write_headers()

defaults) ()

lookup) ()
macro) ()

value) ()

AppContext
AppContext
ExecuteMixin
AppContext
NamespaceMixin
NamespaceMixin
NamespaceMixin
AppContext
AppContext
NamespaceMixin
NamespaceMixin
AppContext
ExecuteMixin
ExecuteMixin
AppContext
ExecuteMixin
ExecuteMixin
AppContext
AppContext
AppContext
AppContext
AppContext
AppContext
ExecuteMixin
AppContext
AppContext
ResponseMixin
ResponseMixin
ExecuteMixin
NamespaceMixin
ResponseMixin
AppContext
AppContext
NamespaceMixin
ExecuteMixin
ResponseMixin

__init__ (app)

There are a number of new methods and attributes introduced by the class.

When you inherit from the AppContext class you must call this constructor.

The app argument specifies the application object. This is saved in the app member.

Stores the app argument to the constructor.

get_macro (name)

Returns the result of the get_macro () method of the application in the app member.

register_macro (name, macro)

Returns the result of the register_macro () method of the application in the app member.

get_lookup (name)

Returns the result of the get_1lookup () method of the application in the app member.

register_lookup (name, lookup)

Returns the result of the register_lookup () method of the application in the app member.

get_tagclass (name)

Returns the result of the get_tagclass () method of the application in the app member.

11.2. The AppContext Base Class

153

Albatross Documentation, Release 1.40

load_template (name)
Returns the result of the 1oad_template () method of the application in the app member.

load_template_once (name)
Returns the result of the 1oad_template_once () method of the application in the app member.

run_template (name)
Calls the application 1oad_template () method to load the template specified in the name argument and
sets the execution context global namespace to the globals of the function which called this method. The
template to_html () method is then called to execute the template.

run_template_once (name)
Calls the application 1oad_template_once () method. If the template specified in the name argument
is loaded or reloaded the method sets the execution context global namespace to the globals of the function
which called this method, then the template to_html () method is then called to execute the template.

clear_locals ()
Overrides the NamespaceMixin clear_locals () method to retain the _ _page__ local namespace
value.

set_page (name, |[...])
Sets the current application page to that specified in the name argument. If changing pages and there is
a current page defined then before changing pages the page_leave () function/method will be called
for the current page. The locals.__page__ member is then set to name and the new page is loaded.
Any addition arguments passed to the method will be passed to the page_enter () function/method code
which is associated with the new page.

Refer to PageMixin Classes for an explanation of page functions/methods.

push_page (name, [...])
Pushes an application page onto the page stack. The current page can be returned to by calling the
pop_page () method. The page_leave () function/method of the current page is not called. The
new page is loaded and it’s page_enter () function/method is called. Any additional arguments given
will be passed to the page_enter () function/method associated with the new page.

pop_page ()
Pops the current page from the page stack and returns to the page that was current when the push_page ()
method was called. The page_leave () function/method of the current page is called prior to loading the
original page. The page_enter () function/method of the original page is not called.

set_request (req)
Saves the browser request specified in the req argument as the request.

req_equals (name)
Returns whether or not the browser request contains a non-empty field with a name which matches the name
argument.

base url ()
Returns the result of the application base_url () method.

current_url ()
Returns the path component (see the standard ur lparse module) of the URI used to request the current

page.
absolute base url ()
Returns the base_url parameter to the application constructor transformed into an absolute URL.

redirect_url (loc)
Returns an absolute URL for the application page identifier specified in the loc parameter.

redirect (loc)
Raises a Redirect exception requesting a redirect to the location in the loc parameter from the application
run () method.

If the loc parameter contains either a scheme or netloc (from the standard urlparse module), or begins
with a “/” then is it used without modification for the Redirect exception. Other forms of loc are assumed

154 Chapter 11. Prepackaged Application and Execution Context Classes

Albatross Documentation, Release 1.40

to be page identifiers and are passed to redirect_url () before being raised as a Redirect exception.

11.3 Context classes:

11.3.1 The SimpleAppContext Class

The SimpleAppContext class is intended to be used for applications which store state at the browser in hidden
HTML fields. An inheritance diagram illustrates the relationship to the SimpleContext class described above.

NamespaceMixin

+local s
+gl obal s

T_init_()

+cl ear _| ocal s()

+set _gl obal s(dict)
+eval _expr (expr)

+set _val ue(nane, val ue)
+nmake_al i as(nane)

+get _val ue(nane)
+has_val ue(nane)
+has_val ues(...)

ResponseMixin

+_init_ ()

+get _header (name)

+set _header (name, val ue)
+del _header (nanme)
+write_headers()
+send_cont ent (dat a)
+send_redirect(loc)

ExecuteMixin

+_init__()

+get _macr o_ar g(nane)
+push_macr o_ar gs(dict)
+pop_macro_args()
+push_content _trap()
+pop_content _trap()
+write_content(data)
+f | ush_content ()
+send_cont ent (dat a)
+reset _content ()

1

1

T

AppContext

+app

+r equest

+__init__(app)

+get _macr o(nane)

+r egi st er _nmacr o(nanme, macr o)
+get _| ookup(nane)

+r egi st er _| ookup(name, | ookup)
+get _t agcl ass(nane)

+| oad_t enpl at e(nane)

+l oad_t enpl at e_once(name)
+run_t enpl at e(nane)
+run_t enpl at e_once(nane)
+cl ear _| ocal s()

+set _page(nane, ...)
+push_page(nane, ...)
+pop_page()

+set _request(req)
+req_equal s(nane)
+base_url ()

+current _url ()

+absol ute_base_url ()
+redirect _url (loc)
+redirect (loc)

SessionBase

Tinit_()
+add_session_vars(...)

+def aul t _sessi on_var (nane, val ue)
+del _session_vars(...)

+sessi on_vars()

+renove_sessi on()

+decode_sessi on(text)
+encode_sessi on()

+set _save_session(fl ag)

+shoul d_save_session()

NameRecorderMixin

+_init__()

+f or m open()

+form cl ose()

+i nput _add(i type, nane, val ue=None, ret urn_| i st =0)

HiddenFieldSessionMixin

+encode_sessi on()
+l oad_sessi on()
+save_session()

7

+ner ge_request ()

+f orm cl ose()

SimpleAppContext

+__init__(app)
+f orm cl ose()

Figure 11.4: The SimpleAppContext class

The methods available in SimpleAppContext and the location of their definition are show below.

Method Mixin
absolute_base_url () AppContext
add_header (name, value) () ResponseMixin
add_session_vars (xnames) () SessionBase
base_url () AppContext
clear_active_select () ExecuteMixin
clear_locals () AppContext
current_url () AppContext
decode_session (text) () SessionBase

Continued on next page |

11.3. Context classes:

155

Albatross Documentation, Release 1.40

Table 11.3 — continued from previous page

default_session_var (name, value) ()
del_header (name) ()
del_session_vars (xnames) ()
encode_session ()

eval_expr (expr) ()
flush_content ()

flush_html ()

form_close ()

form_open ()
get_active_select ()
get_header (name) ()

get_lookup (name) ()

get_macro (name) ()
get_macro_arg (name) ()
get_tagclass (name) ()
get_value (name) ()

has_value (name) ()

has_values (xnames) ()
input_add(itype, name, unused_value,
load_session ()
load_template (name) ()
load_template_once (name) ()
make_alias (name) ()
merge_request ()

merge_vars (xvars) ()
parsed_request_uri ()
pop_content_trap ()
pop_macro_args ()

pop_page (target_page) ()
push_content_trap()
push_macro_args (args, defaults) ()
push_page (name, =*args) ()
redirect (loc) ()
redirect_url (loc) ()
register_lookup (name, lookup) ()
register_macro (name, macro) ()
remove_session ()

req_equals (name) ()
reset_content ()
run_template (name) ()
run_template_once (name) ()
save_session ()

send_content (data) ()
send_redirect (loc) ()
session_vars ()
set_active_select (select, wvalue) ()
set_globals (dict) ()
set_header (name, value) ()
set_page (name, =*args) ()
set_request (req) ()
set_save_session (flag) ()
set_value (name, value) ()
should_save_session ()
write_content (data) ()
write_headers ()

return_list) ()

SessionBase
ResponseMixin
SessionBase
HiddenFieldSessionMixin
NamespaceMixin
ExecuteMixin
ExecuteMixin
SimpleAppContext
NameRecorderMixin
ExecuteMixin
ResponseMixin
AppContext
AppContext
ExecuteMixin
AppContext
NamespaceMixin
NamespaceMixin
NamespaceMixin
NameRecorderMixin
HiddenFieldSessionMixin
AppContext
AppContext
NamespaceMixin
NameRecorderMixin
NamespaceMixin
AppContext
ExecuteMixin
ExecuteMixin
AppContext
ExecuteMixin
ExecuteMixin
AppContext
AppContext
AppContext
AppContext
AppContext
SessionBase
AppContext
ExecuteMixin
AppContext
AppContext
HiddenFieldSessionMixin
ResponseMixin
ResponseMixin
SessionBase
ExecuteMixin
NamespaceMixin
ResponseMixin
AppContext
AppContext
SessionBase
NamespaceMixin
SessionBase
ExecuteMixin
ResponseMixin

The SimpleAppContext class provides the following functionality to your application.

156 Chapter 11. Prepackaged Application and Execution Context Classes

Albatross Documentation, Release 1.40

* Application state is stored inside hidden fields in the HTML.

This function is performed by the HiddenFieldSessionMixin mixin class which places a hidden field
named __albstate__ inside each HTML form constructed using <al-form> tags. The session data
is pickled, compressed, then base64 encoded. No encryption is performed, so this is not suitable for storing
sensitive data.

If you refer back to the Albatross application processing sequence described in the Albatross Application
Model section, you will note where the session is loaded into and saved from the context. These steps corre-
spond to the 1oad_session () and save_session () methods of the execution context respectively.

In the HiddenFieldSessionMixin class, the load_session () method retrieves the encoded ses-
sion data from the __albstate__ field in the browser request. The save_session () method does
not do anything because the session has already been saved into each form produced in the HTML output.

e All input fields in an HTML form which are left empty by the browser will be set to None when the request
is merged into the local namespace.

The NameRecorderMixin mixin class encodes the names of all <al-input> fields in the form inside
a hidden field named __albform__.

Any input field which is left empty in the browser when the form is submitted will not exist in the
browser request to the server. When the toolkit merges the browser request into the application context,
the __albform__ field is used to detect the fields missing from the browser request.

The methods implemented in the SimpleAppContext class are:

__init__ (app)
When you inherit from the SimpleAppContext class you must call this constructor.

The app argument is passed to the AppContext constructor.

form_ close ()
Invokes the form_close () method of the NameRecorderMixin class and encode_session () of
the HiddenFieldSessionMixin class.

11.3.2 The SessionAppContext Class

The SessionAppContext class is intended to be used for applications which store state at the server. An
inheritance diagram illustrates the relationship to the SimpleAppContext class described above.

The methods available in SessionAppContext and the location of their definition are show below.

Method Mixin
absolute_base_url () AppContext
add_header (name, value) () ResponseMixin
add_session_vars (xnames) () SessionBase
base_url () AppContext
clear_active_select () ExecuteMixin
clear_locals () AppContext
current_url () AppContext
decode_session (text) () SessionBase
default_session_var (name, value) () SessionBase

del _header (name) () ResponseMixin
del_session_vars (*names) () SessionBase
encode_session () SessionBase
eval_expr (expr) () NamespaceMixin
flush_content () ExecuteMixin
flush_html () ExecuteMixin
form_close () NameRecorderMixin
form_open () NameRecorderMixin
get_active_select () ExecuteMixin

Continued on next page ‘

11.3. Context classes:

157

Albatross Documentation, Release 1.40

Table 11.4 — continued from previous page

get_header (name) ()
get_lookup (name) ()
get_macro (name) ()
get_macro_arg(name) ()
get_tagclass (name) ()
get_value (name) ()
has_value (name) ()
has_values (*¥names) ()
input_add (itype,
load_session ()
load_template (name) ()
load_template_once (name) ()
make_alias (name) ()
merge_request ()
merge_vars (xvars) ()
new_session ()
parsed_request_uri ()
pop_content_trap ()
pop_macro_args ()
pop_page (target_page) ()
push_content_trap ()
push_macro_args (args, defaults) ()
push_page (name, =xargs) ()
redirect (loc) ()
redirect_url (loc) ()
register_lookup (name,

name, unused_value, return_list) ()

lookup) ()
register_macro (name, macro) ()
remove_session ()

reqg_equals (name) ()
reset_content ()

run_template (name) ()
run_template_once (name) ()
save_session ()
send_content (data) ()
send_redirect (loc) ()
sesid()

session_vars ()
set_active_select (select,
set_globals (dict) ()
set_header (name, value) ()
set_page (name, =*args) ()
set_request (req) ()
set_save_session (flag) ()
set_value (name, value) ()
should_save_session ()
write_content (data) ()
write_headers ()

value) ()

ResponseMixin
AppContext
AppContext
ExecuteMixin
AppContext
NamespaceMixin
NamespaceMixin
NamespaceMixin
NameRecorderMixin
SessionServerContextMixin
AppContext
AppContext
NamespaceMixin
NameRecorderMixin
NamespaceMixin
SessionServerContextMixin
AppContext
ExecuteMixin
ExecuteMixin
AppContext
ExecuteMixin
ExecuteMixin
AppContext
AppContext
AppContext
AppContext
AppContext
SessionServerContextMixin
AppContext
ExecuteMixin
AppContext
AppContext
SessionServerContextMixin
ResponseMixin
ResponseMixin
SessionServerContextMixin
SessionBase
ExecuteMixin
NamespaceMixin
ResponseMixin
AppContext
AppContext
SessionBase
NamespaceMixin
SessionBase
ExecuteMixin
ResponseMixin

Externally the execution context is almost identical to that of the SimpleAppContext class. Instead of saving
session data in hidden HTML fields, session data is loaded and saved via a session server which is managed by

the application.
The class defines a number of extra methods.

__init__ (app)

When you inherit from the SessionAppContext class you must call this constructor.

The app argument is passed to the AppContext constructor.

158

Chapter 11. Prepackaged Application and Execution Context Classes

Albatross Documentation, Release 1.40

NamespaceMixin

+l ocal s
+gl obal s
+__init__()

+cl ear _| ocal s()

+set _gl obal s(dict)
+eval _expr (expr)

+set _val ue(nane, val ue)
+nake_al i as(nane)

+get _val ue(nane)
+has_val ue(nane)
+has_val ues(...)

ResponseMixin

+_init__()

+get _header (name)

+set _header (nane, val ue)
+del _header (nane)
+write_headers()
+send_cont ent (dat a)
+send_redirect (I oc)

ExecuteMixin

T init_()
+get _macr o_ar g(nanme)
+push_nacro_args(dict)
+pop_nacro_args()
+push_content _trap()
+pop_content _trap()
+write_content(data)
+f | ush_content ()
+send_cont ent (dat a)
+reset_content ()

AppContext

+app
+request

+__init__(app)

+get _macr o(nane)

+regi st er _nmacr o(name, macr o)
+get _| ookup(name)

+regi st er _| ookup(name, | ookup)
+get _tagcl ass(nane)

+| oad_t enpl at e(nane)

+l oad_t enpl at e_once(nane)
+run_t enpl at e(name)

+run_t enpl at e_once(nane)

+cl ear _l ocal s()
+set _page(nane, .
+push_page(nane, ...
+pop_page()

+set _request (req)
+req_equal s(name)
+base_url ()

+current _url ()
+absol ute_base_url ()
+redirect_url (loc)
+redirect(loc)

SessionBase

+_init_()
+add_session_vars(...)

+def aul t _sessi on_var (nane, val ue)
+del _session_vars(...)

+sessi on_vars()
+renove_session()

+decode_sessi on(text)
+encode_sessi on()

+set _save_session(fl ag)

+shoul d_save_session()

NameRecorderMixin

SessionServerContextMixin

+_init__()
+f orm open()
+f orm cl ose()

+ner ge_request ()

+i nput _add(i type, nane, val ue=None, ret urn_l i st =0)

+_init__()

+sesi d()

+l oad_sessi on()
+save_session()
+remove_sessi on()

1

A

)

SessionAppContext

+__init__(app)

Figure 11.5: The SessionAppContext class

11.3. Context classes:

159

Albatross Documentation, Release 1.40

11.3.3 The SessionFileAppContext Class

The SessionFileAppContext class is intended to be used for applications which store state at the server.

An inheritance diagram illustrates the relationship to the SimpleAppContext class described above.

NamespaceMixin

+l ocal s
+gl obal s

ExecuteMixin

+_init_()

+_init_()
+cl ear _l ocal s()

ResponseMixin

+get _macro_ar g(nane)

+push_nacro_args(dict)

+set _gl obal s(dict)
+eval _expr (expr)

+set _val ue(nane, val ue)
+make_al i as(name)

+get _val ue(nane)
+has_val ue(nane) +send_cont ent (dat a)
+has_val ues(...) +send_r edi rect (1 oc)

Tint_()

+get _header (nane)

+set _header (nane, val ue)
+del _header (name)
+write_headers()

+pop_macro_ar gs()
+push_content _trap()
+pop_content _trap()
+write_content(data)
+f | ush_content ()
+send_cont ent (dat a)
+reset_content ()

i i

7

AppContext

+app
+r equest

+__init__(app)

+get _macr o(nane)

+regi st er _nmacro(name, macr o)
+get _| ookup(nane)

+regi st er _| ookup(nane, | ookup)
+get _tagcl ass(nane)

+| oad_t enpl at e(nane)

+| oad_t enpl at e_once(name)
+run_t enpl at e(nane)

+run_t enpl at e_once(nane)

+cl ear _| ocal s()

+set _page(nane,...)
+push_page(nane, ...)
+pop_page()

SessionBase

+_init__()

+add_sessi on_vars(...)

+def aul t _sessi on_var (nane, val ue)
+del _session_vars(...)

+sessi on_vars()

+renove_sessi on()

+decode_sessi on(text)
+encode_sessi on()

+set _save_session(fl ag)

+shoul d_save_sessi on()

+set _request (req)
+r eq_equal s(name)

NameRecorderMixin

SessionFileContextMixin

+base_url ()

+current _url ()

+absol ut e_base_url ()
+redirect _url (loc)
+redirect(loc)

+_init__()
+f or m_open()
+f orm cl ose()

+mer ge_r equest ()

+i nput _add(i type, nane, val ue=None, return_| i st=0)

+_init_()
+sesid()

+l oad_sessi on()
+save_session()
+r enove_sessi on()

7

N

7

SessionFileAppContext

+_

nit__(app)

Figure 11.6: The SessionFileAppContext class

The methods available in SessionFileAppContext and the location of their definition are show below.

Method Mixin
absolute_base_url () AppContext
add_header (name, value) () ResponseMixin
add_session_vars (xnames) () SessionBase
base_url () AppContext
clear_active_select () ExecuteMixin
clear_locals () AppContext
current_url () AppContext
decode_session (text) () SessionBase
default_session_var (name, value) () SessionBase
del_header (name) () ResponseMixin
del_session_vars (*names) () SessionBase
encode_session () SessionBase
eval_expr (expr) () NamespaceMixin
flush_content () ExecuteMixin
flush_html () ExecuteMixin
form_close () NameRecorderMixin

Continued on next page \

160

Chapter 11. Prepackaged Application and Execution Context Classes

Albatross Documentation, Release 1.40

Table 11.5 — continued from previous page

form_open ()

get_active_select ()

get_header (name) ()
get_lookup (name) ()
get_macro (name) ()
get_macro_arg(name) ()
get_tagclass (name) ()
get_value (name) ()
has_value (name) ()
has_values (¥names) ()
input_add (itype,
load_session ()
load_template (name) ()
load_template_once (name) ()
make_alias (name) ()
merge_request ()
merge_vars (xvars) ()
parsed_request_uri ()
pop_content_trap ()
pop_macro_args ()
pop_page (target_page) ()
push_content_trap ()
push_macro_args (args, defaults) ()
push_page (name, =*args) ()
redirect (loc) ()
redirect_url (loc) ()
register_lookup (name,
register_macro (name,
remove_session ()
reqg_equals (name) ()
reset_content ()
run_template (name) ()
run_template_once (name) ()
save_session ()
send_content (data) ()
send_redirect (loc) ()
sesid()
session_vars ()
set_active_select (select,
set_globals (dict) ()
set_header (name, value) ()
set_page (name, =*args) ()
set_request (req) ()
set_save_session (flag) ()
set_value (name, value) ()
should_save_session ()
write_content (data) ()
write_headers ()

name, unused_value, return_list) ()

lookup) ()
macro) ()

value) ()

NameRecorderMixin

ExecuteMixin

ResponseMixin
AppContext
AppContext
ExecuteMixin
AppContext
NamespaceMixin
NamespaceMixin
NamespaceMixin
NameRecorderMixin
SessionFileContextMixin
AppContext
AppContext
NamespaceMixin
NameRecorderMixin
NamespaceMixin
AppContext
ExecuteMixin
ExecuteMixin
AppContext
ExecuteMixin
ExecuteMixin
AppContext
AppContext
AppContext
AppContext
AppContext
SessionFileContextMixin
AppContext
ExecuteMixin
AppContext
AppContext
SessionFileContextMixin
ResponseMixin
ResponseMixin
SessionFileContextMixin
SessionBase
ExecuteMixin
NamespaceMixin
ResponseMixin
AppContext
AppContext
SessionBase
NamespaceMixin
SessionBase
ExecuteMixin
ResponseMixin

Externally the execution context is almost identical to that of the SimpleAppContext class. Instead of saving
session data in hidden HTML fields, session data is loaded and saved to the servers local file system, which is

managed by the application.
The class defines a number of extra methods.

__init__ (app)

When you inherit from the SessionFileAppContext class you must call this constructor.

11.3. Context classes:

161

Albatross Documentation, Release 1.40

The app argument is passed to the AppContext constructor.

11.3.4 The BranchingSessionContext Class

The BranchingSessionContext classisintended to be used with the server-side session application classes.
It creates a new session for each interaction with the client, and stores the session identifier in a hidden form field.
This allows us to detect when the browser state rolls back (via the browser back button), and find the appropriate
session context, giving an effect like the client-side SimpleAppContext without storing the entire context in a

hidden form field.

NamespaceMixin

+locals

+global s
+_dinit_ ()
+clear_locals()
+set_globals(dict)
+eval_expriexpr)
+set_valuelname, value)
+make_alias(name]
+get_value(name)
+has_valuelname)
+has_values(...)

1

ResponseMixin

+_init_ ()
+get_header(name)
+set_header(name, value)
+del_header(name]
+write_headers|()
+send_content(data)
+send_redirect(loc)

1

ExecuteMixin

+_init_ ()
+get_macro_arginame)
+push_macro_args(dict)
+pop_macro_argsl)
+push_content_trap()
+pop_content_trapl)
+write_contertidata)
+flush_contert (]
+send_content(datal
+reset_content|(]

T

AppCont ext

+app
+request

+_init_ lapp)
+get_macro(name)
+register_macrol name, macro)
+get_lookup(name)
+register_lookup(name,lookup)
+get_tagclassi name)
+load_template(name)
+load_template_once(name)
+run_templatel name)
+rur_template _once(name]
+clear_localsl)
+set_page(name,. . .)
+push_page(name, ...
+pop_pagel)
+set_request(req)
+req_equal s{ name)
+base_url()
+current_urli)
+absolute_base_url{)
+redirect_urliloc)
+redirect (loc)

NameRecorderMixin

+__dnit_ (]
+form_open()
+form_close()

+merge request ()

+input_add(itype,name,value=MNone, return_list=0)

SessionBase

+_init_ ()
+add_session_varsi...)
+default_session_var(name, value)
+del_session_varsi...)
+session_vars()
+remove_sessionf)
+decode_sessionitext)
+encode_sessionl)
+set_save_sessioniflag)

+should save session()

i

BranchingSessionMixin

+_dnit_ ()
+sesid()
+load_session()
+save_session()
+remove_session()
+form closel)

7

7

7

BranchingSessionCont ext

+ init_ (app)
+form closel)

Figure 11.7: The BranchingSessionContext class

The methods available in BranchingSessionContext and the location of their definition are show below.

Method Mixin
absolute_base_url () AppContext
add_header (name, value) () ResponseMixin
add_session_vars (xnames) () SessionBase
base_url () AppContext
clear_active_select () ExecuteMixin
clear_locals () AppContext

‘ Continued on next page |

162

Chapter 11. Prepackaged Application and Execution Context Classes

Albatross Documentation, Release 1.40

Table 11.6 — continued from previous page

current_url () AppContext
decode_session (text) () SessionBase
default_session_var (name, value) () SessionBase

del header (name) () ResponseMixin
del_session_vars (*names) () SessionBase
encode_session () SessionBase
eval_expr (expr) () NamespaceMixin
flush_content () ExecuteMixin
flush_html () ExecuteMixin
form_close () BranchingSessionContext
form_open () NameRecorderMixin
get_active_select () ExecuteMixin
get_header (name) () ResponseMixin
get_lookup (name) () AppContext
get_macro (name) () AppContext
get_macro_arg(name) () ExecuteMixin
get_tagclass (name) () AppContext
get_value (name) () NamespaceMixin
has_value (name) () NamespaceMixin
has_values (xnames) () NamespaceMixin
input_add (itype, name, unused_value, return_list) () NameRecorderMixin
load_session () BranchingSessionMixin
load_template (name) () AppContext
load_template_once (name) () AppContext
make_alias (name) () NamespaceMixin
merge_request () NameRecorderMixin
merge_vars (xvars) () NamespaceMixin
parsed_request_uri () AppContext
pop_content_trap () ExecuteMixin
pop_macro_args () ExecuteMixin
pop_page (target_page) () AppContext
push_content_trap () ExecuteMixin
push_macro_args (args, defaults) () ExecuteMixin
push_page (name, =*args) () AppContext
redirect (loc) () AppContext
redirect_url (loc) () AppContext
register_lookup (name, lookup) () AppContext
register_macro (name, macro) () AppContext
remove_session () BranchingSessionMixin
reqg_equals (name) () AppContext
reset_content () ExecuteMixin
run_template (name) () AppContext
run_template_once (name) () AppContext
save_session () BranchingSessionMixin
send_content (data) () ResponseMixin
send_redirect (loc) () ResponseMixin
sesid() BranchingSessionMixin
session_vars () SessionBase
set_active_select (select, wvalue) () ExecuteMixin
set_globals (dict) () NamespaceMixin
set_header (name, value) () ResponseMixin
set_page (name, =*args) () AppContext
set_request (req) () AppContext
set_save_session (flag) () SessionBase
set_value (name, value) () NamespaceMixin
should_save_session () SessionBase

\ Continued on next page

11.3. Context classes: 163

Albatross Documentation, Release 1.40

Table 11.6 — continued from previous page

txid () BranchingSessionMixin
write_content (data) () ExecuteMixin
write_headers() ResponseMixin

Externally the execution context is almost identical to that of the Simple AppContext class. Instead of saying the
session data in hidden HTML fields, the session identifier is stored in a hidden field, and the session data is saved
and loaded from the session server.

The class defines a number of extra methods:

__init__ (app)
When you inherit from the BranchingSessionContext class you must call this constructor.

The app argument is passed to the AppContext constructor.

form_close ()
Invokes the form_close () method of the NameRecorderMixin class and encode_session () of
the BranchingSessionMixin class.

11.4 The Application Base Class

The Application class is the base class for all Albatross application objects.

The class inherits from the ResourceMixin class to allow all application resources to be loaded once and used
for every browser request. The AppContext class directs all resource related execution context method here.

The methods available in Application and the location of their definition are show below.

Method Mixin

base_url () Application
discard_file_resources (filename) () | ResourceMixin
format_exception () Application
get_lookup (name) () ResourceMixin
get_macro (name) () ResourceMixin
get_tagclass (name) () ResourceMixin
handle_exception(ctx, req) () Application
load_session (ctx) () Application
merge_request (ctx) () Application
pickle_sign (text) () Application
pickle_unsign (text) () Application
register_lookup (name, lookup) () ResourceMixin
register_macro (name, macro) () ResourceMixin
register_tagclasses (xtags) () ResourceMixin
remove_session (ctx) () Application
run (req) () Application
save_session (ctx) () Application
template_traceback (tb) () Application
validate_request (ctx) () Application

The Application class introduces a number of new methods.

__init__ (base_url)
When you inherit from the Application class you must call this constructor.

The base_url argument is used as the base for URLs produced by the <al-a> and <al-form> tags.

base url ()
Returns the base_url argument which was passed to the constructor.

164 Chapter 11. Prepackaged Application and Execution Context Classes

Albatross Documentation, Release 1.40

ResourceMixin

+_init__()

+get _macr o(nane)

+r egi st er _macr o(name, nacr o)
+get _| ookup(name)

+regi st er _| ookup(nane, | ookup)
+get _tagcl ass(nane)

+regi ster _tagcl asses(tags)

Application

+_init__()

+run(req)

+f or mat _exception()
+handl e_exception(ctx, req)
+t enpl at e_traceback(tb)
+l oad_sessi on(ct x)
+save_sessi on(ctx)
+renove_sessi on(ct x)
+val i dat e_r equest (ct x)
+base_url ()

+ner ge_r equest (ctx)

+pi ckl e_si gn(text)

+pi ckl e_unsi gn(text)

Figure 11.8: The Application class

run (req)
Implements the standard application run sequence as described in the Albatross Application Model section.
The browser request passed as the req argument is attached to the execution context as soon as the context
has been created.

If an exception is caught then the handle_exception () method is called passing the req argument.

format_exception ()
Retrieves the current exception from sys.exc_info () then formats and returns the standard Python
traceback and a template interpreter traceback.

handle_exception (ctx, req)
This implements the default exception handling for applications. The req argument is the browser request
which was passed to the run () method.

The method calls the format_exception () method to construct a standard Python traceback and a
template traceback. A temporary execution context is then created, the Python traceback is saved in the
locals.python_exc value, and the template traceback in the locals.html_exc value.

The method then tries to load the ' traceback.html’ template file and execute it with the temporary
execution context. This gives you the ability to control the presentation and reporting of exceptions.

If any exceptions are raised during the execution of ’ t raceback.html’ the method writes both format-
ted exceptions as a <pre> formatted browser response.

template_traceback (1b)
Generates a template interpreter traceback from the Python stack trace in the b argument.

load_session (ctx)
Calls the 1oad_session () method of the execution context in the ctx argument.

save_session (ctx)
Calls the save_session () method of the execution context in the ctx argument.

remove_session (crx)
Calls the remove_session () method of the execution context in the ctx argument.

validate_request (ctx)
Returns TRUE.

You should override this method in your application object if you need to validate browser requests before
processing them. Returning False will prevent the browser request being merged into the local namespace

11.4. The Application Base Class 165

Albatross Documentation, Release 1.40

and the page_process logic will not be called (see also the description of the Albatross Application Model
in Albatross Application Model).

pickle_sign (fext)
Returns an empty string to prevent insecure pickles being sent to the browser. This is overridden in the
PickleSignMixin class.

pickle_unsign (fext)
Returns an empty string to prevent insecure pickles being accepted from the browser. This is overridden in
the PickleSignMixin class.

merge_request (ctx)
Calls the merge_request () method of the execution context.

11.5 Application Classes:

11.5.1 The SsimpleApp Class

The SimpleApp class is intended for use in monolithic applications (page objects instead of page modules). An
inheritance diagram illustrates the relationship to the SimpleAppContext class described above.

ResourceMixin

Tinit_()

+get _macr o(nane)

+r egi st er _nmacr o(nane, macr o)
+get _| ookup(name)

+r egi st er _| ookup(name, | ookup)
+get _t agcl ass(nane)

+regi ster _tagcl asses(tags)

1

Application

+_init__()
+run(req)
+f or mat _exception()

PageObjectMixin

+handl e_exception(ctx, req)
+t enpl at e_t raceback(tb)

+l oad_sessi on(ct x)
+save_sessi on(ctx)
+renove_sessi on(ct x)

+val i dat e_r equest (ct x)
+base_url ()

+mer ge_r equest (ct x)

+pi ckl e_si gn(text)

+pi ckl e_unsi gn(text)

PickleSignMixin

+__init__(start_page)
+nodul e_pat h()
+start_page()

+r egi st er _page(name, obj)
+| oad_page(ct x)
+page_enter (ctx, args)
+page_| eave(ctx)
+process_request (ctx)
+di spl ay_r esponse(ct x)

CachingTemplateLoaderMixin

+__init__(secret)
+pi ckl e_si gn(text)
+pi ckl e_unsi gn(text)

+__init__(base_dir)
+| oad_t enpl at e(nane)
+l oad_t enpl at e_once(name)

The methods available in SimpleApp and the location of their definition are show below.

Iy

A

SimpleApp

+_init__(...)
+create_context()

Figure 11.9: The

SimpleApp class

Method Mixin

base_url () Application
create_context () SimpleApp
discard_file_resources (filename) () ResourceMixin
display_response (ctx) () PageObjectMixin

‘ Continued on next page |

166 Chapter 11. Prepackaged Application and Execution Context Classes

Albatross Documentation, Release 1.40

Table 11.7 — continued from previous page

format_exception () Application
get_lookup (name) () ResourceMixin
get_macro (name) () ResourceMixin
get_tagclass (name) () ResourceMixin
handle_exception (ctx, req) () Application
is_page_module (name) () PageObjectMixin
load_page (ctx) () PageObjectMixin
load_session(ctx) () Application
load_template (name) () CachingTemplatelLoaderMixin
load_template_once (name) () CachingTemplateLoaderMixin
merge_request (ctx) () Application
page_enter (ctx, args) () PageObjectMixin
page_leave (ctx) () PageObjectMixin
pickle_sign (text) () PickleSignMixin
pickle_unsign (text) () PickleSignMixin
process_request (ctx) () PageObjectMixin
register_lookup (name, lookup) () ResourceMixin
register_macro (name, macro) () ResourceMixin
register_page (name, obj) () PageObjectMixin
register_tagclasses (xtags) () ResourceMixin
remove_session (ctx) () Application

run (req) () Application
save_session (ctx) () Application
start_page () PageObjectMixin
template_traceback (tb) () Application
validate_request (ctx) () Application

The SimpleApp class defines the following methods:

__init__ (base_url, template_path, start_page, secret)

When you inherit from the SimpleApp class you must call this constructor.

The base_url argument is used as the base for URLs produced by the <al-a> and <al-form> tags. The
template_path defines the root directory where template files are loaded from. The start_page identifies the
first page that will be served up in a new browser session. The secret argument is used to sign all pickles

sent to the browser.

create_context ()
Returns a new instance of the SimpleAppContext class.

11.5.2 The SimpleSessionApp Class

The SimpleSessionApp class is intended for use in monolithic applications (page objects instead of page
modules). Session state is stored at the server.

The methods available in SimpleSessionApp and the location of their definition are show below.

Method Mixin

base_url () Application
create_context () SimpleSessionApp
del_session (sesid) () SessionServerAppMixin
discard_file_resources (filename) () ResourceMixin
display_response (ctx) () PageObjectMixin
format_exception () Application
get_lookup (name) () ResourceMixin
get_macro (name) () ResourceMixin
get_session (sesid) () SessionServerAppMixin

‘ Continued on next page |

11.5. Application Classes:

167

Albatross Documentation, Release 1.40

Table 11.8 — continued from previous page

get_tagclass (name) () ResourceMixin
handle_exception(ctx, req) () Application
is_page_module (name) () PageObjectMixin
load_page (ctx) () PageObjectMixin
load_session (ctx) () Application

load_template (name) ()
load_template_once (name) ()

CachingTemplatelLoaderMixin
CachingTemplateLoaderMixin

merge_request (ctx) () Application
new_session () SessionServerAppMixin
page_enter (ctx, args) () PageObjectMixin
page_leave (ctx) () PageObjectMixin
pickle_sign (text) () PickleSignMixin
pickle_unsign (text) () PickleSignMixin
process_request (ctx) () PageObjectMixin
put_session(sesid, text) () SessionServerAppMixin
register_lookup (name, lookup) () ResourceMixin
register_macro (name, macro) () ResourceMixin
register_page (name, obj) () PageObjectMixin
register_tagclasses (xtags) () ResourceMixin
remove_session (ctx) () Application

run (req) () Application
save_session (ctx) () Application

ses_age () SessionServerAppMixin
ses_appid/() SessionServerAppMixin
start_page () PageObjectMixin
template_traceback (tb) () Application
validate_request (ctx) () Application

The SimpleSessionApp class defines the following methods:

__init__ (base_url, template_path, start_page, secret, session_appid, [session_server ‘‘= ’localhost’*‘],

[server_port ‘= 34343°‘], [session_age ‘= 1800°‘])
When you inherit from the SimpleSessionApp class you must call this constructor.

The base_url argument is used as the base for URLs produced by the <al-a> and <al-form> tags. The
template_path defines the root directory where template files are loaded from. The start_page identifies the
first page that will be served up in a new browser session. The secret argument is used to sign all pickles
sent to the browser.

The session_appid argument identifies the session application at the session server. Multiple applications
can share sessions by using the same identifier here. The session_server argument defines the host where
the session server is running, it defaults to localhost. The server_port defines the session server port,
it defaults to 3434 3. The session_age argument defines the number of seconds that an idle session will be
kept, it defaults to 1800.

create_context ()
Returns a new instance of the SessionAppContext class.

11.5.3 The SimpleSessionFileApp Class

The SimpleSessionFileApp class is intended for use in monolithic applications (page objects instead of
page modules). Session state is stored in the file system at the server.

The methods available in SimpleSessionFileApp and the location of their definition are show below.

| Method | Mixin \

\ Continued on next page |

168 Chapter 11. Prepackaged Application and Execution Context Classes

Albatross Documentation, Release 1.40

Table 11.9 — continued from previous page

base_url ()
create_context ()
del_session (sesid) ()

load_template (name) ()
load_template_once (name) ()

Application
SimpleSessionFileApp
SessionFileAppMixin

discard_file_resources (filename) () ResourceMixin
display_response (ctx) () PageObjectMixin
format_exception () Application
get_lookup (name) () ResourceMixin
get_macro (name) () ResourceMixin
get_session(sesid) () SessionFileAppMixin
get_tagclass (name) () ResourceMixin
handle_exception(ctx, req) () Application
is_page_module (name) () PageObjectMixin
load_page (ctx) () PageObjectMixin
load_session(ctx) () Application

CachingTemplatelLoaderMixin
CachingTemplateLoaderMixin

merge_request (ctx) () Application
new_session () SessionFileAppMixin
page_enter (ctx, args) () PageObjectMixin
page_leave (ctx) () PageObjectMixin
pickle_sign (text) () PickleSignMixin
pickle_unsign (text) () PickleSignMixin
process_request (ctx) () PageObjectMixin
put_session(sesid, text) () SessionFileAppMixin
register_lookup (name, lookup) () ResourceMixin
register_macro (name, macro) () ResourceMixin
register_page (name, obij) () PageObjectMixin
register_tagclasses (xtags) () ResourceMixin
remove_session (ctx) () Application

run (req) () Application
save_session (ctx) () Application

ses_age () SessionFileAppMixin
ses_appid() SessionFileAppMixin
start_page () PageObjectMixin
template_traceback (tb) () Application
validate_request (ctx) () Application

The SimpleSessionFileApp class defines the following methods:

__init__ (base_url, template_path, start_page, secret, session_appid, session_dir)
When you inherit from the SimpleSessionFileApp class you must call this constructor.

The base_url argument is used as the base for URLs produced by the <al-a> and <al-form> tags. The
template_path defines the root directory where template files are loaded from. The start_page identifies the
first page that will be served up in a new browser session. The secret argument is used to sign all pickles
sent to the browser.

The session_appid argument identifies the session application in the browser cookie. Multiple applications
can share sessions by using the same identifier here. The session_dir argument defines the directory in
which the application will store session files.

create_context ()
Returns a new instance of the SessionFileAppContext class.

11.5.4 The ModularApp Class

The ModularApp class is intended for use in applications which define page code in a collection of Python
modules.

11.5. Application Classes: 169

Albatross Documentation, Release 1.40

ResourceMixin

T init_()

+get _macr o(nane)

+r egi st er _macr o(name, nacr o)
+get _| ookup(nane)

+r egi st er _| ookup(name, | ookup)
+get _tagcl ass(nane)

+regi ster_tagcl asses(tags)

Zr PageObjectMixin

Application
+__init__(start_page)
+_init__() +modul e_pat h()
+run(req) +start_page()
+f or mat _excepti on() +regi st er _page(nane, obj)
+handl e_excepti on(ctx, req) +l oad_page(ctx)
+t enpl at e_t raceback(t b) +page_ent er (ctx, ar gs)
+l oad_sessi on(ct x) +page_| eave(ctx)
+save_sessi on(ct x) +process_request (ctx)
+r enove_sessi on(ct x) +di spl ay_r esponse(ctx)
+val i dat e_r equest (ct x) A
+base_url ()
+ner ge_r equest (ct x)
+pi ckl e_si gn(text)
7P ckl e tnsi gnitext) SessionServerAppMixin

+__init__(appid,server,port, age)

PickleSignMixin CachingTemplateLoaderMixin +ses_appi d()
+get _sessi on(sesid)
+__init__(secret) +__init__(base_dir) +new_sessi on()
+pi ckl e_si gn(text) +| oad_t enpl at e(nane) +put _sessi on(sesid, text)
+pi ckl e_unsi gn(text) +l oad_t enpl at e_once(name) +del _sessi on(sesid)

A

SimpleSessionApp

+_init__(...)

+creat e_cont ext ()

Figure 11.10: The SimpleSessionApp class

ResourceMixin

T_init_()

+get _macr o(nane)

+r egi st er _nmacr o(nane, macr o)
+get _| ookup(name)

+r egi st er _| ookup(name, | ookup)
+get _t agcl ass(nane)

+regi ster_tagcl asses(tags)

1

Application
PageObjectMixin

+_init__()

+run(req) +__init__(start_page)

+f or mat _exception() +nodul e_pat h()

+handl e_exception(ctx, req) +start_page()

+t enpl at e_t raceback(tb) +regi st er _page(nane, obj)

+l oad_sessi on(ct x) +l oad_page(ct x)

+save_sessi on(ct x) +page_ent er (ctx, args)

+r enove_sessi on(ct x) +page_| eave(ct x)

+val i dat e_r equest (ct x) +process_r equest (Ct x)

+base_url () +di spl ay_r esponse(ct x)

+mer ge_r equest (ct x)

+pi ckl e_si gn(text) A

+pi ckl e_unsi gn(text i n)

p _ an() SessionFileAppMixin
Tt
PickleSignMixin CachingTemplateLoaderMixin +ses_appi d()
+get _sessi on(sesid)

+_init_(secret) +__init__(base_dir) +new_sessi on()
+pi ckl e_si gn(text) +| oad_t enpl at e(nane) +put _sessi on(sesid, text)
+pi ckl e_unsi gn(text) +| oad_t enpl at e_once(name) +del _sessi on(sesid)

3 A 5

SimpleSessionFileApp

+_init_(...)
+create_context ()

Figure 11.11: The SimpleSessionFileApp class

170 Chapter 11. Prepackaged Application and Execution Context Classes

Albatross Documentation, Release 1.40

ResourceMixin

T_init_()
+get _macr o(nane)

+get _| ookup(name)

+get _t agcl ass(nane)

+r egi st er _macr o(nanme, nacr o)
+r egi st er _| ookup(name, | ookup)

+regi ster_tagcl asses(tags)

1

Application

+_init__()
+run(req)
+f or mat _exception()

+l oad_sessi on(ct x)
+save_sessi on(ctx)
+renove_sessi on(ct x)
+val i dat e_r equest (ct x)
+base_url ()

+mer ge_r equest (ct x)

+pi ckl e_si gn(text)

+pi ckl e_unsi gn(text)

+handl e_exception(ctx, req)
+t enpl at e_t raceback(tb)

PageModuleMixin

+__init__(base_dir,start_page)
+modul e_pat h()

+start_page()

+l oad_page(ct x)

+l oad_page_nodul e(ct x, nane)
+page_enter (ctx, args)

+page_| eave(ct x)
+process_request (ctx)

+di spl ay_r esponse(ct x)

PickleSignMixin

+__init__(secret)
+pi ckl e_si gn(text)
+pi ckl e_unsi gn(text)

i

CachingTemplateLoaderMixin

+__init__(base_dir)
+| oad_t enpl at e(nane)
+l oad_t enpl at e_once(name)

A

N

ModularApp

it (..
+create_context()

Figure 11.12: The ModularApp class

The methods available in ModularApp and the location of their definition are show below.

module_path ()

Method Mixin

base_url () Application
create_context () ModularApp
discard_file_resources (filename) () | ResourceMixin
display_response (ctx) () PageModuleMixin
format_exception () Application
get_lookup (name) () ResourceMixin
get_macro (name) () ResourceMixin
get_tagclass (name) () ResourceMixin
handle_exception(ctx, req) () Application
is_page_module (name) () PageModuleMixin
load_page (ctx) () PageModuleMixin
load_page_module (ctx, name) () PageModuleMixin
load_session(ctx) () Application

load_template (name) ()
load_template_once (name) ()
merge_request (ctx) ()

page_enter (ctx, args) ()
page_leave (ctx) ()

pickle_sign (text) ()
pickle_unsign (text) ()
process_request (ctx) ()
register_lookup (name, lookup) ()
register_macro (name, macro) ()
register_tagclasses (xtags) ()

CachingTemplatelLoaderMixin
CachingTemplateLoaderMixin
Application
PageModuleMixin
PageModuleMixin
PageModuleMixin
PickleSignMixin
PickleSignMixin
PageModuleMixin
ResourceMixin
ResourceMixin
ResourceMixin

\ Continued on next page

11.5. Application Classes:

171

Albatross Documentation, Release 1.40

Table 11.10 — continued from previous page

remove_session (ctx) () Application
run (req) () Application
save_session (ctx) () Application
start_page () PageModuleMixin
template_traceback (tb) () Application
validate_request (ctx) () Application

The ModularApp class defines the following methods:

__init__ (base_url, module_path, template_path, start_page, secret)
When you inherit from the ModularApp class you must call this constructor.

The base_url argument is used as the base for URLs produced by the <al-a> and <al-form> tags. The
module_path argument defines the root directory where page modules are loaded from. The femplate_path
argument defines the root directory where template files are loaded from. The start_page identifies the first
page that will be served up in a new browser session. The secret argument is used to sign all pickles sent to
the browser.

create_context ()
Returns a new instance of the SimpleAppContext class.

11.5.5 The ModularSessionApp Class

The ModularSessionApp class is intended for use in applications which define page code in a collection of
Python modules. Session state is stored at the server.

ResourceMixin

Tt ()
+get _macr o(nane)

+r egi st er _macr o(name, macr o)
+get _| ookup(name)

+regi st er _| ookup(nane, | ookup)
+get _tagcl ass(nane)

+regi ster_tagcl asses(tags)

i

Application
PageModuleMixin
+_init__()
+run(req)) +__init__(base_dir,start_page)
+f or mat _exception() +nmodul e_pat h()
+hand| e_exception(ctx,req) +start_page()
+t enpl at e_t raceback(tb) +| oad ;age(cl X)
+l oad_sessi on(ct x) +| oad_page_nodul e(ct x, nane)
+save_sessi on(ctx) +page_ent er (ctx, args)
+r enove_sessi on(ct x) +page_| eave(ct x)
+val i dat e_r equest (ct x) +process_request (ctx)
+base_url () +di spl ay_r esponse(ct x)
+mer ge_r equest (ct x)
+pi ckl e_si gn(text) A
+pi ckl e_unsi gn(text i ixi
pi _unsi gn(text) SessionServerAppMixin

+__init__(appid,server, port, age)

PickleSignMixin CachingTemplateLoaderMixin +ses_appi d()
+get _sessi on(sesi d)
+__init__(secret) +__init__(base_dir) +new_sessi on()
+pi ckl e_si gn(text) +| oad_t enpl at e(nane) +put _sessi on(sesi d, text)
+pi ckl e_unsi gn(text) +l oad_t enpl at e_once(nanme) +del _sessi on(sesi d)

i i T

ModularSessionApp

+_dinit__(...)
+create_context ()

Figure 11.13: The ModularSessionApp class

The methods available in ModularSessionApp and the location of their definition are show below.

172 Chapter 11. Prepackaged Application and Execution Context Classes

Albatross Documentation, Release 1.40

Method Mixin

base_url () Application
create_context () ModularSessionApp
del_session (sesid) () SessionServerAppMixin
discard_file_resources (filename) () ResourceMixin
display_response (ctx) () PageModuleMixin
format_exception () Application
get_lookup (name) () ResourceMixin
get_macro (name) () ResourceMixin
get_session (sesid) () SessionServerAppMixin
get_tagclass (name) () ResourceMixin
handle_exception(ctx, req) () Application
is_page_module (name) () PageModuleMixin
load_page (ctx) () PageModuleMixin
load_page_module (ctx, name) () PageModuleMixin
load_session (ctx) () Application
load_template (name) () CachingTemplatelLoaderMixin
load_template_once (name) () CachingTemplatelLoaderMixin
merge_request (ctx) () Application
module_path () PageModuleMixin
new_session () SessionServerAppMixin
page_enter (ctx, args) () PageModuleMixin
page_leave (ctx) () PageModuleMixin
pickle_sign (text) () PickleSignMixin
pickle_unsign (text) () PickleSignMixin
process_request (ctx) () PageModuleMixin
put_session(sesid, text) () SessionServerAppMixin
register_lookup (name, lookup) () ResourceMixin
register_macro (name, macro) () ResourceMixin
register_tagclasses (*tags) () ResourceMixin
remove_session (ctx) () Application

run (req) () Application
save_session (ctx) () Application

ses_age () SessionServerAppMixin
ses_appid/() SessionServerAppMixin
start_page () PageModuleMixin
template_traceback (tb) () Application
validate_request (ctx) () Application

The ModularSessionApp class defines the following methods:

I3

__init__ (base_url, module_path, template_path, start_page, secret, session_appid, [session_server ‘= "lo-

calhost’*‘], [server_port ‘= 34343°‘], [session_age ‘= 1800°‘])
When you inherit from the ModularSessionApp class you must call this constructor.

The base_url argument is used as the base for URLs produced by the <al-a> and <al-form> tags. The
module_path argument defines the root directory where page modules are loaded from. The template_path
argument defines the root directory where template files are loaded from. The start_page identifies the first
page that will be served up in a new browser session. The secret argument is used to sign all pickles sent to
the browser.

The session_appid argument identifies the session application at the session server. Multiple applications
can share sessions by using the same identifier here. The session_server argument defines the host where
the session server is running, it defaults to localhost. The server_port defines the session server port,
it defaults to 34343. The session_age argument defines the number of seconds that an idle session will be
kept, it defaults to 1800.

create_context ()
Returns a new instance of the SessionAppContext class.

11.5. Application Classes: 173

Albatross Documentation, Release 1.40

11.5.6 The ModularSessionFileApp Class

The ModularSessionFileApp class is intended for use in applications which define page code in a collection
of Python modules. Session state is stored in the file system at the server.

ResourceMixin

T init_()

+get _macr o(nane)

+r egi st er _nacr o(name, nmacr o)
+get _| ookup(nane)

+r egi st er _| ookup(name, | ookup)
+get _t agcl ass(nane)

+regi ster_tagcl asses(tags)

i

Application
PageModuleMixin

+_init__()

+run(reaq) +_init__(base_dir,start_page)

+f or mat _exception() +nodul e_pat h()

+handl e_exception(ctx, req) +start_page()

+tenpl at e_t raceback(tb) + oad Eage(ctx)

+l oad_sessi on(ctx) +| oad_page_nodul e(ct x, nane)

+save_sessi on(ctx) +page_ent er (ctx, args)

+renove_sessi on(ct x) +page_| eave(ct x)

+val i dat e_r equest (ct x) +process_request (ct x)

+base_url () +di spl ay_r esponse(ct x)

+ner ge_r equest (ctx)

+pi ckl e_si gn(text) A

+pi ckl e_unsi gn(text)

SessionFileAppMixin
PickleSignMixin CachingTemplateLoaderMixin +ses_appi d()
+get _sessi on(sesid)

+__init__(secret) +__init__(base_dir) +new_sessi on()
+pi ckl e_si gn(text) +| oad_t enpl at e(name) +put _sessi on(sesi d, text)
+pi ckl e_unsi gn(text) +l oad_t enpl at e_once(nane) +del _sessi on(sesid)

i i T

ModularSessionFileApp

+_init__(...)
+create_context()

Figure 11.14: The ModularSessionFileApp class

The methods available in ModularSessionFileApp and the location of their definition are show below.

Method Mixin

base_url () Application
create_context () ModularSessionFileApp
del_session(sesid) () SessionFileAppMixin
discard_file_resources (filename) () ResourceMixin
display_response (ctx) () PageModuleMixin
format_exception () Application
get_lookup (name) () ResourceMixin
get_macro (name) () ResourceMixin
get_session (sesid) () SessionFileAppMixin
get_tagclass (name) () ResourceMixin
handle_exception(ctx, req) () Application
is_page_module (name) () PageModuleMixin
load_page (ctx) () PageModuleMixin
load_page_module (ctx, name) () PageModuleMixin
load_session (ctx) () Application
load_template (name) () CachingTemplateLoaderMixin
load_template_once (name) () CachingTemplatelLoaderMixin
merge_request (ctx) () Application
module_path () PageModuleMixin
new_session () SessionFileAppMixin

‘ Continued on next page

174 Chapter 11. Prepackaged Application and Execution Context Classes

Albatross Documentation, Release 1.40

Table 11.12 — continued from previous page

page_enter (ctx, args) () PageModuleMixin
page_leave (ctx) () PageModuleMixin
pickle_sign (text) () PickleSignMixin
pickle_unsign (text) () PickleSignMixin
process_request (ctx) () PageModuleMixin
put_session (sesid, text) () SessionFileAppMixin
register_lookup (name, lookup) () ResourceMixin
register_macro (name, macro) () ResourceMixin
register_tagclasses (xtags) () ResourceMixin
remove_session (ctx) () Application

run (req) () Application
save_session (ctx) () Application

ses_age () SessionFileAppMixin
ses_appid() SessionFileAppMixin
start_page () PageModuleMixin
template_traceback (tb) () Application
validate_request (ctx) () Application

The ModularSessionFileApp class defines the following methods:

__init__ (base_url, module_path, template_path, start_page, secret, session_appid, session_dir)

When you inherit from the ModularSessionFileApp class you must call this constructor.

The base_url argument is used as the base for URLs produced by the <al-a> and <al-form> tags. The
module_path argument defines the root directory where page modules are loaded from. The template_path
argument defines the root directory where template files are loaded from. The start_page identifies the first
page that will be served up in a new browser session. The secret argument is used to sign all pickles sent to

the browser.

The session_appid argument identifies the session application in the browser cookie. Multiple applications
can share sessions by using the same identifier here. The session_dir argument defines the directory in

which the application will store session files.

create_context ()
Returns a new instance of the SessionFileAppContext class.

11.5.7 The RandomModularApp Class

The RandomModularApp class is intended for use in applications which define page code in a collection of
Python modules which are randomly accessed via the URI in the browser request.

The methods available in RandomModularApp and the location of their definition are show below.

Method Mixin

base_url () Application
create_context () RandomModularApp
discard_file_resources (filename) () ResourceMixin
display_response (ctx) () RandomPageModuleMixin
format_exception () Application
get_lookup (name) () ResourceMixin
get_macro (name) () ResourceMixin

get_page_from_uri (ctx, uri) () RandomPageModuleMixin
get_tagclass (name) () ResourceMixin
handle_exception(ctx, req) () Application
is_page_module (name) () PageModuleMixin

load_badurl_template (ctx) ()
load_page (ctx) ()
\ Continued on next page |

RandomPageModuleMixin
RandomPageModuleMixin

11.5. Application Classes: 175

Albatross Documentation, Release 1.40

Table 11.13 — continued from previous page

load_page_module (ctx, name) ()
load_session (ctx) ()
load_template (name) ()
load_template_once (name) ()
merge_request (ctx) ()
module_path ()
page_enter (ctx) ()
page_leave (ctx) ()
pickle_sign (text) ()
pickle_unsign (text) ()
process_request (ctx) ()

register_macro (name, macro) ()
register_tagclasses (xtags) ()
remove_session (ctx) ()

run (req) ()
save_session (ctx) ()
start_page ()
template_traceback (tb) ()
validate_request (ctx) ()

register_lookup (name, lookup) ()

PageModuleMixin
Application
CachingTemplatelLoaderMixin
CachingTemplatelLoaderMixin
Application
PageModuleMixin
RandomPageModuleMixin
PageModuleMixin
PickleSignMixin
PickleSignMixin
RandomPageModuleMixin
ResourceMixin
ResourceMixin
ResourceMixin

Application

Application

Application
PageModuleMixin
Application

Application

The RandomModularApp class defines the following methods:

__init__ (base_url, page_path, start_page, secret)

When you inherit from the RandomModularApp class you must call this constructor.

The base_url argument is used as the base for URLs produced by the <al-a> and <al-form> tags. The
page_path argument defines the root directory where page modules and template files are loaded from. The
start_page identifies the page that will be served up when a page identifier cannot be determined from the

URI in the browser request. The secret argument is used to sign all pickles sent to the browser.

create_context ()

Returns a new instance of the SimpleAppContext class.

11.5.8 The RandomModularSessionApp Class

The RandomModularSessionApp class is intended for use in applications which define page code in a col-
lection of Python modules which are randomly accessed via the URI in the browser request. Session state is stored

at the server.

The methods available in RandomModularSessionApp and the location of their definition are show below.

Method

Mixin

base_url ()
create_context ()
del_session(sesid) ()

display_response (ctx) ()
format_exception ()

get_lookup (name) ()

get_macro (name) ()
get_page_from_uri (ctx, uri) ()
get_session (sesid) ()
get_tagclass (name) ()
handle_exception(ctx, req) ()
is_page_module (name) ()
load_badurl_template (ctx) ()

discard_file_resources (filename) ()

Application
RandomModularSessionApp
SessionServerAppMixin
ResourceMixin
RandomPageModuleMixin
Application
ResourceMixin
ResourceMixin
RandomPageModuleMixin
SessionServerAppMixin
ResourceMixin
Application
PageModuleMixin
RandomPageModuleMixin

Continued on next page

176 Chapter 11. Prepackaged Application and Execution Context Classes

Albatross Documentation, Release 1.40

Table 11.14 — continued from previous page

load_page (ctx) ()
load_page_module (ctx,
load_session(ctx) ()
load_template (name) ()
load_template_once (name) ()
merge_request (ctx) ()
module_path ()

new_session ()

page_enter (ctx) ()
page_leave (ctx) ()

pickle_sign (text) ()
pickle_unsign (text) ()
process_request (ctx) ()
put_session (sesid, text) ()
register_lookup (name, lookup) ()
register_macro (name, macro) ()
register_tagclasses (xtags) ()
remove_session (ctx) ()

run (req) ()

save_session (ctx) ()

ses_age ()

ses_appid()

start_page ()
template_traceback (tb) ()
validate_request (ctx) ()

name) ()

RandomPageModuleMixin
PageModuleMixin
Application

CachingTemplatelLoaderMixin
CachingTemplateLoaderMixin

Application
PageModuleMixin
SessionServerAppMixin
RandomPageModuleMixin
PageModuleMixin
PickleSignMixin
PickleSignMixin
RandomPageModuleMixin
SessionServerAppMixin
ResourceMixin
ResourceMixin
ResourceMixin
Application
Application
Application
SessionServerAppMixin
SessionServerAppMixin
PageModuleMixin
Application
Application

The RandomModularSessionApp class defines the following methods:

__init__ (base_url, page_path, start_page, secret, session_appid, [session_server ‘‘= ’localhost’ ‘],

[server_port ‘= 34343°‘], [session_age ‘= 1800°‘])
When you inherit from the RandomModularSessionApp class you must call this constructor.

The base_url argument is used as the base for URLs produced by the <al-a> and <al-form> tags. The
page_path argument defines the root directory where page modules and template files are loaded from. The
start_page identifies the page that will be served up when a page identifier cannot be determined from the
URI in the browser request. The secret argument is used to sign all pickles sent to the browser.

The session_appid argument identifies the session application at the session server. Multiple applications
can share sessions by using the same identifier here. The session_server argument defines the host where
the session server is running, it defaults to 1localhost. The server_port defines the session server port,
it defaults to 34343. The session_age argument defines the number of seconds that an idle session will be
kept, it defaults to 1800.

create_context ()
Returns a new instance of the SessionAppContext class.

11.5.9 The RandomModularSessionFileApp Class

The RandomModularSessionFileApp class is intended for use in applications which define page code in a
collection of Python modules which are randomly accessed via the URI in the browser request. Session state is
stored in the file system at the server.

The methods available in RandomModularSessionFileApp and the location of their definition are show
below.

| Method | Mixin \

Continued on next page

11.5. Application Classes: 177

Albatross Documentation, Release 1.40

Table 11.15 - continued from previous page

base_url () Application
create_context () RandomModularSessionFileApp
del_session(sesid) () SessionFileAppMixin
discard_file_resources (filename) () ResourceMixin
display_response (ctx) () RandomPageModuleMixin
format_exception () Application
get_lookup (name) () ResourceMixin
get_macro (name) () ResourceMixin
get_page_from_uri (ctx, uri) () RandomPageModuleMixin
get_session (sesid) () SessionFileAppMixin
get_tagclass (name) () ResourceMixin
handle_exception(ctx, req) () Application
is_page_module (name) () PageModuleMixin
load_badurl_template (ctx) () RandomPageModuleMixin
load_page (ctx) () RandomPageModuleMixin
load_page_module (ctx, name) () PageModuleMixin
load_session (ctx) () Application
load_template (name) () CachingTemplatelLoaderMixin
load_template_once (name) () CachingTemplatelLoaderMixin
merge_request (ctx) () Application
module_path () PageModuleMixin
new_session () SessionFileAppMixin
page_enter (ctx) () RandomPageModuleMixin
page_leave (ctx) () PageModuleMixin
pickle_sign (text) () PickleSignMixin
pickle_unsign (text) () PickleSignMixin
process_request (ctx) () RandomPageModuleMixin
put_session (sesid, text) () SessionFileAppMixin
register_lookup (name, lookup) () ResourceMixin
register_macro (name, macro) () ResourceMixin
register_tagclasses (xtags) () ResourceMixin
remove_session (ctx) () Application

run (req) () Application
save_session (ctx) () Application

ses_age () SessionFileAppMixin
ses_appid() SessionFileAppMixin
start_page () PageModuleMixin
template_traceback (tb) () Application
validate_request (ctx) () Application

The RandomModularSessionFileApp class defines the following methods:

__init__ (base_url, page_path, start_page, secret, session_appid, session_dir)
When you inherit from the RandomModularSessionFileApp class you must call this constructor.

The base_url argument is used as the base for URLSs produced by the <al-a> and <al-form> tags. The
page_path argument defines the root directory where page modules and template files are loaded from. The
start_page identifies the page that will be served up when a page identifier cannot be determined from the
URI in the browser request. The secret argument is used to sign all pickles sent to the browser.

The session_appid argument identifies the session application at the session server. Multiple applications
can share sessions by using the same identifier here. The session_dir argument defines the directory in
which the application will store session files.

create_context ()
Returns a new instance of the SessionFileAppContext class.

178 Chapter 11. Prepackaged Application and Execution Context Classes

Albatross Documentation, Release 1.40

ResourceMixin

+__init_ ()
+get_macro(name)
+register_macro(name,macro)
+get_lookup(name)

+register_lookup (name, lookup)

+get_tagclass (name)
+register_tagclasses (tags)

Application

+__init_ ()
+run(req)
+format_exception()
+handle_exception(ctx, req)
+template_traceback(th)
+load_session(ctx)
+save_session (ctx)
+remove_session(ctx)
+validate_request(ctx)
+base_url ()

+merge_request (ctx)
+pickle_sign(text)
+pickle_unsign(text)

PickleSignMixin

CachingTemplateLoaderMixin

+

init_ (secret)
+pickle_sign(text)
+pickle_unsign(text)

+__init_ (base_dir)
+Lload_template (name)
+load_template_once(name)

PageModuleMixin

+__init_ (base_dir,start_page)
+module_path ()

+start_page()

+Load_page (ctx)
+Lload_page_module (ctx,name)
+page_enter(ctx, args)
+page_leave(ctx)
+process_request (ctx)
+display_response(ctx)

RandomPageModuleMixin

+load_page (name)
+get_page_from_uri(ctx,uri)
+load_badurl_template(ctx)
+page_enter(ctx)
+process_request (ctx)
+display response(ctx)

A

RandomModularApp

+__init_ (...)

+create_context()

Figure 11.15: The RandomModularApp class

11.5. Application Classes:

179

Albatross Documentation, Release 1.40

ResourceMixin

PageModuleMixin

+_init_ ()

+get_macrolname)
+register_macrolname,macro)
+get_lookupiname)
+register_lookupiname,lookup]
+get_tagclass(name)

+register tagclasses(tags)

+_init_ (base_dir,start_page)
+module_pathl)

+start_pagel)

+Load_page(ctx)
+load_page_modul el ctx,name)
+page_enter(ctx,args)
+page_leave(ctx)
+process_request | ctx)

+display responselctx)

Application

+_init_ ()

+runireg]
+format_exception()
+handle_exception(ctx, req)
+template_t raceback(th)
+load_session(ctx)
+save_session|ctx)
+remove_sessionlctx)
+validate request(ctx)
+base_url()
+merge_request (ctx)
+pickle_sign{text)
+pickle_unsignitext)

Ja\

RandomPageModuleMixin

+load page(name]
+get_page from_urifctx,uri]
+load_badurl_templatelctx)
+page_enter(ctx)
+process_request (ctx)
+display_response(ctx)

SessionServerAppMixin

+_init_ (appid,server,port,age)

PickleSignMixin

+_init_ (secret)
+pickle_signitext)
+pickle unsignitext)

CachingTemplateLoaderMixin

+__init_ (base_dir)
+load_templateiname)
+load template oncelname)

+ses_appid()
+get_session|sesid)
+new_sessionl |
+put_sessionisesid, text)
+del session|sesid)

A

]

RandomModularSessionApp

+_dnit_ (...])
+cregte _contextl)

Figure 11.16: The RandomModularSessionApp class

180 Chapter 11. Prepackaged Application and Execution Context Classes

Albatross Documentation, Release 1.40

ResourceMixin

+_init_ ()

+get_macro(name)
+register_macro(name,macro)
+get_lookup (name)
+register_lookup (name, lookup)
+get_tagclass(name)
+register_tagclasses(tags)

Application

+ init ()

+run(req)
+format_exception()
+handle_exception(ctx, req)
+template_traceback (th)
+load_session(ctx)
+save_session(ctx)
+remove_session (ctx)
+validate_request(ctx)
+base_url()
+merge_request (ctx)
+pickle_sign(text)
+pickle_unsign(text)

PageModuleMixin

+__init_ (base_dir,start_page)
+module_path()

+start_page()

+Load_page (ctx)
+Lload_page_module (ctx,name)
+page_enter(ctx,args)
+page_leave (ctx)
+process_request(ctx)
+display_response(ctx)

RandomPageModuleMixin

+load_page (name)
+get_page_from_uri(ctx,uri)
+load_badurl_template(ctx)
+page_enter(ctx)
+process_request (ctx)

+display_response (ctx)

PickleSignMixin

+_init_ (secret)
+pickle_sign(text)
+pickle_unsign(text)

CachingTemplateLoaderMixin

+_init_ (base_dir)
+Toad_template (name)
+load_template_once(name)

A

SessionFileAppMixin

+ses_appid()
+get_session(sesid)
+new_session()
+put_session(sesid, text)
+del_session(sesid)

T

RandomModularSessionFileApp

+_init_ (.

o)
+create_context()

Figure 11.17: The RandomModularSessionFileApp class

11.5. Application Classes:

181

Albatross Documentation, Release 1.40

182 Chapter 11. Prepackaged Application and Execution Context Classes

CHAPTER
TWELVE

SUMMARY OF CHANGES

This chapter describes the changes made to Albatross between releases.

12.1 Release 1.40.

This section describes the changes made to Albatross since release 1.36.

12.1.1 Major Changes

¢ Conversion of documentation to reStructured Text

With the Python documentation moving from LaTeX markup to reStructuredText and the Sphinx documen-
tation generator, we could no longer rely on the documentation utilities released with Python. The Albatross
documentation has been converted to ReST, and uses Sphinx to render this to HTML and PDF formats.

¢ Albatross Forms

A simple HTML form generation and validation framework has been added to Albatross (as an optional
extension under the module name albatross.ext . form).

12.1.2 Bug Fixes
* Redirects were not calling req. return_code () - for FastCGI deployment, this meant the request would
hang [11164].

* The python built-in ___import__ () gained extra arguments with python 2.6 - the decode session import
hook has been changed to pass all arguments (positional and keyword) [14823].

* When rendering tags to HTML, the handling of the noescape attribute was not consistently honoured. At-
tribute rendering has been moved to the common Tag base class asthe write_attrib () method [15398].

» Relaxed tag recognition regular expressions, so that malformed tag attributes with no value, such as
<al-input name= />, are still recognised as valid Albatross tags, albeit with a null name attribute
(which subsequently generates an error) [15398].

12.1.3 Miscellaneous Changes

* Miscellaneous changes to RedHat, Ubuntu, Solaris and OS X packaging rules.

* Reorganised the unit tests to eliminate the use of explicitly assembled test suites, relying instead on the
unittest module to collect methods of TestCase subclasses. The documentation example tests were also
reimplemented as TestCase subclasses, allowing them to be run via common test driver.

183

http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/
http://sphinx.pocoo.org/

Albatross Documentation, Release 1.40

12.2 Release 1.36

This section describes the changes in release 1.36 of Albatross that were made since release 1.35.

12.2.1 New Features

New <al-for vars="...”> attribute

A vars attribute has been added to <al-for> - this inserts the iterator value into the local namespace. The iterator
value was previously only accessible via the iterator value () method.

<al-for> now accepts iterators

<al-for> now loops over sequences using the iterator protocol by default. The previous behaviour of indexing the
sequence is retained where pagination or columns are requested.

Default arguments for macros using <al-setdefault>

New <al-setdefault> tag which allows macros to define default values for their arguments (suggested by Greg
Bond).

<al-expand> argument shorthand

Macro expansion can now use attributes on the <al-expand> tag to specify macro arguments (suggested by Greg
Bond).

Access to HTTP environment variables

Added get_param() method to Request classes, which deployment method agnostic access to http “environment”
variables.

12.2.2 Functional Changes
Safer request merging
NameRecorderMixin no longer falls back to merging all request fields if no ___albform__ field is present.

Applications using the NameRecorderMixin and GET-style requests will need to explicitly merge relevent
fields with the ctx .merge_vars (.. .) method.

Switch from MD5 to SHA1

Pickles embedded in hidden fields are now signed using the HMAC-SHA1 algorithm (was MD5).

New FastCGl driver now default

The experimental FastCGI driver included in version 1.35 now becomes the default FastCGI driver. The old driver
has been renamed fcgiappold. The new driver implements the FastCGI protocol itself, rather than depending on
an external module.

184 Chapter 12. Summary of Changes

Albatross Documentation, Release 1.40

12.2.3 Bug Fixes

<al-option> fixes
If the <al-option> tag was not immediately enclosed within an <al-select> tag, it would be silently ignored. <al-

option> now works within containing flow control tags such as <al-for> or <al-if>, has improved error reporting,
and supports attributes for dynamically setting value and label.

Session server client code enhancements

Communication with the session server has been made more robust. EINTR is handled, as are partial reads and
writes, and requests are restarted if the socket closes.

Fix to input type recording

Mixing radio inputs with other inputs of the same name did not raise an exception (reported by Michael Neel).

Fixed incorrect constant in FastCGl driver

FCGI_MAX_DATA was incorrect due to an operator precedence mistake. Found by Tom Limoncelli.

12.2.4 Miscellaneous Changes

Clean up pre-python 2.2 constructs

Cleaned up and replaced many pre-python 2.2 constructs.

New and updated unit tests

Many new tests have been added, and existing tests restructured.

12.3 Release 1.35

This section describes the changes in release 1.35 of Albatross that were made since release 1.34. Note that release
1.34 was an internal release.

12.3.1 New Features

New FastCGI module

A drop-in replacement for the £cgiapp module, called fcgiappnew has been added. This version implements
the FastCGI protocol itself, rather than relying on an external module to implement the protocol (we have not been
able to clarify the license of the fcgi.py module). This new module addresses several minor problems with fcgi.py,
and should be faster, although it should not be used in critical applications until it has received wider testing. This
module will eventually be renamed to replace fcgiapp (at which point, the fcgiappnew name will dropped).

12.3. Release 1.35 185

Albatross Documentation, Release 1.40

12.3.2 Functional Changes

Validate extension tag nhames

When extension tags (alx-*) are registered, their name is now checked against the template parsing regexp to
ensure they can subsequently be matched.

12.3.3 Bug Fixes
Enhance AnyTag with knowledge of empty HTML tags

The AnyTag functionality was given knowledge of HTML tags for which the close tag is forbidden, so it can avoid
generating XHTML empty tag (which could cause the page to fail HTML validation).

Input tags with disabledbool attribute

When the disabledbool attribute was used on input tags, the disabled state was not being passed through to the
input registry within the NameRecorderMixin.

Improve session server handling of aborted connections

If a client closed it’s connection to the session server while the server had data pending for the client, a subsequent
del_write_file would generate an exception, killing the session server.

12.4 Release 1.33

This section describes the changes in release 1.33 of Albatross that were made since release 1.32.

12.4.1 Bug Fixes

ctx.set_value()

Fixed handling of tree iterator backdoor and improved error reporting.

12.5 Release 1.32

This section describes the changes in release 1.32 of Albatross that were made since release 1.31.

12.5.1 Bug Fixes

_caller_globals()
To obtain a reference to the current frame, _caller_globals was raising and catching an exception, then extracting

the tb_frame member of sys.exc_traceback. sys.exc_traceback was deprecated in python 1.5 as it is not thread-
safe. It now appears to be unreliable in 2.4, so _caller_globals has been changed to use sys._getframe().

ctx.set_page() from start page

If ctx.set_page() was called from within the start page, then the wrong page methods (page_enter, page_display,
etc) would be called (those of the initial page, rather than the page requested via set_page).

186 Chapter 12. Summary of Changes

Albatross Documentation, Release 1.40

12.6 Release 1.31

This section describes the changes in release 1.31 of Albatross that were made since release 1.30.

12.6.1 Bug Fixes

RandomPage error handling

Fixes to handling of missing RandomPage page modules.

12.7 Release 1.30

This section describes the changes in release 1.30 of Albatross that were made since release 1.20.

12.7.1 Functional Changes

Evaluate any attribute of any tag

Arbitrary HTML tags can now access the templating engine by prefixing the tag with “al-““. Attributes of the tag
can then be selectively evaluated to derive their value. Appending “expr” to the attribute name causes the result of
evaluating the expression to be substituted for the value of the attribute. Appending “bool” results in the attribute
value being evaluated in a boolean context, and if true, a boolean HTML attribute is emitted. For example:
<al-td colspanexpr="i.span()">

could produce

<td colspan="3">

and:

<al-input name="abc.value" disabledbool="abc.isdisabled()">

could produce

<input name="abc.value" disabled>

Enforce only one definition of macros and lookups

Since macros and lookups are an application global resource, they can only be defined once per application, how-
ever this was not previously enforced. Redefinition of macros or lookups will now result in an ApplicationError
exception.

In-line expansion of <al-lookup>

The <al-lookup> tag can now be optionally expanded in place. If the tag has an expr= attribute, this will be
evaluated and used as the value to look up, and the results of the lookup substituted for the tag.

Functionality of named lookups remains unchanged.

12.6. Release 1.31 187

Albatross Documentation, Release 1.40

New <al-require> tag
A new <al-require> tag has been added to allow templates to assert that specific Albatross features are available,

or templating scheme version number is high enough. For instance, the addition of the “Any Tag” functionality
has resulting in the templating version incrementing from 1 to 2.

Set Cache-Control header

Cache-Control: no-cache isnow setin addition to Pragma: no-cache.

Cache—-Control was introduced in HTTP/1.1, prior to this the same effect was achieved with Pragma. Some
browsers change their behaviour depending on whether the page was delivered via HTTP/1.1 or HTTP/1.0.

Simplified Session Cookie handling

Session cookie handling has been simplified.

12.7.2 Bug Fixes

FastCGil finalisation
FastCGI apps were not being explicitly finalised, relying instead on their object destructor, with the result that

writing application output (or errors) would be indefinitely deferred if object cycles existed. We now call
fcgi.Finish () from the fcgiapp Request.return_code () method.

Delete traceback objects

When handling exceptions, the traceback is now explicitly deleted from the local namespace to prevent cycles
(otherwise the garbage collection of other objects in the local namespace will be delayed).

<al-select> fixes

Two fixes to the <al-select> tag: the albatross-specific “list” attribute was leaking into resulting markup, and
the use of the “expr” attribute would result in invalid markup being emitted.

lllegal placement of <input> tag

Thanks to Robert Fendt for picking this up: the Albatross-generated hidden field input element must not appear
naked inside a form element for strict HTML conformance. The solution is to wrap the input elements in div.

Allow BranchingSessions to be deleted

BranchingSession sessions could not be “deleted” because each interaction is a separate session. The solution
implemented is to add a dummy “session” shared by all branches, which is deleted when one branch “logs out”.

12.8 Release 1.20

This section describes the changes in release 1.20 of Albatross that were made since release 1.11.

188 Chapter 12. Summary of Changes

Albatross Documentation, Release 1.40

12.8.1 Functional Changes

New BranchingSessionContext

A persistent problem with server-side sessions is the browser state getting out of synchronisation with the appli-
cation state. This occurs when the user reloads the page or uses the “back” button.

A new BranchingSessionContext application context class has been added that attempts to work around
this problem by creating a new server-side session for every interaction with the browser. The unique session
identifier is stored in a hidden form field, rather than a cookie.

The new Context class is intended to be used with the server-side Application classes, and provides a similar
experience to storing the context in a hidden form field, without the overhead and security issues of sending the
context on a round-trip through the user’s browser.

No effort is made at this time to control the resources used by these server- side sessions, other than expiring them
after session_age seconds.

Improved Request classes

The Request classes provide the interface between specific application deployment models (CGI, FastCGlI,
mod_python, etc), and the Albatross application. These classes have been refactored to extract common func-
tionality into a new RequestBase class. The Request classes also now have methods for passing status back to
browser.

Page Module loading
The page module loader in PageModuleMixin has been reimplemented so that it does not pollute sys .modules.

Page modules are now loaded into a synthetic module’s namespace, rather than the global module namespace. This
will break code that defined classes in page modules and placed instances of those classes into the session.

Multi-instance response headers now supported
Some HTTP headers can appear multiple times (for example Set-Cookie) - the response handling has been mod-
ified to allow multiple instances of a header. ResponseMixin.get_header () now returns a list of strings,

rather than just a string. The httpdapp module has also been updated to allow multiple instances of a header,
keeping headers in a list rather than a dictionary.

simpler req_equals () matching with image maps

ctx.req_equals (name) now checks for name . x if name is not found. This makes using image maps as
buttons easier (from Michael C. Neel).

12.8.2 Bug Fixes

redirect_url () fixes

Under some circumstances, redirect_url () would redirect to incorrect or invalid URLs (for example, an
https app would redirect to http) - the URI parsing has been refactored, and this bug has been fixed. Tests were
also added for the refactored URI parsing.

12.8. Release 1.20 189

Albatross Documentation, Release 1.40

Improved request status handling

1. Symbolic names are now defined for the RFC1945 status header values, such as
HTTP_OK, HTTP_MOVED_PERMANENTLY, HTTP_MOVED_TEMPORARILY and
HTTP_INTERNAL_SERVER_ERROR

2. The Request classes (deployment model adaptors) and Application run () method have been updated to
correctly pass the returned status back to the client.

Response header matching now case-insensitive

Response header names were being matched in a case-sensitive way - this was incorrect and has been fixed.

Cookie handling fixes

1. A Cookie path bug was noticed when Albatross applications were used with the Safari browser.
absolute_base_url () was generating a trailing slash on the returned application URL (so
/path/app.cgi/ instead of /path/app.cgi). This was causing problems for requests like /path/app.cgi?blah
in that Safari did not send the cookie (probably correctly).

2. When an application was accessed via https, the secure attribute on any resulting cookies was not being
set. This attribute marks the cookie to be only returned via an https connection. The secure attribute is
now set.

3. Cookie max-age was being allowed to default - this is now explicitly set to match the configured session
age (from the Application session_age parameter).

12.9 Release 1.11

This section describes the changes in release 1.11 of Albatross that were made since release 1.10.

12.9.1 Functional Changes

<al-select>/<al-input> consistency

<al-select> handling of name, expr, valueexpr and value attributes has been made consistent with
that of <al—-input>.

absolute_base_ url method

New method absolute_base_url () has been added to the AppContext.

al-httpd enhancements

Matt Goodall has continued to improve the capabilities of the al-httpd program and httpdapp . py so that it
is now possible to run all of the CGI based sample applications.

You can now initialise the static_resources from the command line. For example, the tree samples can be

executed to serve up their images like this:

$ cd samples/tree?2
$ al-httpd tree.app 8080 /alsamp/images ../images/

190 Chapter 12. Summary of Changes

Albatross Documentation, Release 1.40

XHTML fixes

The <al-input> and <al-img> tags now output XHTML compliant end tags.

12.9.2 Bug Fixes

mod_python support

Greg Bond fixed a cgiapp field handling incompatibility with mod_python 3.

get_servername () support

The get_servername () method of the cgiapp and fcgiapp Request classes now use the HTTP_HOST
environment variable rather than SERVER_NAME.

Multiple cookies

All session cookies now include a path attribute. This prevents multiple redundant cookies being set for all URI
paths in an application.

12.10 Release 1.10

This section describes the changes in release 1.10 of Albatross that were made since release 1.01.

12.10.1 Functional Changes

FastCGl support

Matt Goodall developed support for deployment of applications via FastCGI. FastCGI applications import their
Request class from albatross. fcgiapp.

Standalone BaseHTTPServer support

Matt Goodall developed support for standalone deployment of applications via the standard Python
BaseHTTPServer module. The al-httpd program can be used to deploy a CGI application as a standalone
BaseHTTPServer server.

Exception Classes

All Albatross exceptions have been redefined to indicate the source of the error; user (UserError), program-
mer (ApplicationError), or Albatross itself (InternalError). The ServerError exception reports
problems related to the session server, SecurityError reports either a programmer error, or a user attempt to
access restricted values in the execution context, and TemplateLoadError reports failures to load templates.

All of the exceptions inherit from AlbatrossError.

The albatross.common module defines the exceptions.

12.10. Release 1.10 191

Albatross Documentation, Release 1.40

Response Header Management
All response header management has been moved to the ResponseMixin class. The AppContext class now
inherits from ResponseMixin. The Request class no longer tracks whether or not headers have been sent.

ResponseMixin provides the ability to set, get, delete, and send headers. Headers are automatically sent when
the application sends any content to the browser.

The write_headers () method has been deleted from the following classes; SimpleAppContext,
SessionAppContext, SessionServerContextMixin, SessionFileContextMixin,
SessionFileAppContext.

For SessionServerContextMixin and SessionFileContextMixin the Set—Cookie header is set
when session is created or loaded.

HTTP Response Codes

The Application.run () method no longer unconditionally returns an HTTP response code of 200.
The returned response code is retrieved from the Request.status () method. You can call the
Request.set_status () method to override the default HTTP response code of 200.

File Uploading

The <al-input> tag now supports type="file" input tags. When you use file input tags the enclosing
<al-form> tag automatically adds the enctype="multipart/form—-data" attribute to the generated
<form> tag.

The albatross.cgiapp and albatross.apacheapp modules define a FileField class which pro-
vides access to uploaded files. During request merging the Request . field_file () method returns instances
of FileField for uploaded files.

Session Changes
The Application.run () method now saves the session before flushing the response to the browser. This
allows applications to support dynamically generated images.

The SessionBase.add_session_vars () method now raises an ApplicationError exception if you
attempt to add variables to the session which do not exist in the local namespace.

The SessionBase.default_session_var () method allows you to add a variable to the session and place
it in the local namespace at the same time.

Session saving previously silently removed session values which could not be pickled. Now unpickleable values
are reported via an ApplicationError exception.

Errors handling and reporting during session loading has been improved.
Exception Formatting and Handling
The exception formatting in Application.handle_exception() has been moved into the

format_exception () method. Applications can perform their own exception formatting and/or send
formatted exceptions to locations other than the browser.

Unicode

The ExecuteMixin.write_content () method now converts unicode to UTF-8.

192 Chapter 12. Summary of Changes

Albatross Documentation, Release 1.40

Execution Context Available to Template Expressions

During NamespaceMixin.eval_expr () the execution context is temporary placed into the local namespace
as the variable __ ctx_

Request Merging
NamespaceMixin.set_value () ignores attempts to set Albatross iterators that are not present in the names-
pace.

NamespaceMixin.set_value () produces a nice syntax error like report when an illegal field name is used.

Locating Globals for Template Expressions

The _caller_globals () function has been changed to use the name of a function rather a stack frame count.
This is used by the methods AppContext .run_template (), AppContext.run_template_once (),
RandomPageModuleMixin.display_ response (), and SimpleContext.__ _init__ () to locate
the module whose globals will be used as the global namespace for evaluating template expressions.

Tree Handling
The <al-tree> tag now has a single attribute which enables the single select mode. In single select mode,
selecting a node automatically deselects any previously selected node.

The <al-input> tag now supports the treefold="expr", treeselect="expr", and
treeellipsis="expr" attributes. The expression specifies a tree node that is used to construct a tree
iterator input value.

The following methods have been added to the LazyTreeIterator class; load_children(),
is_selected(), select_alias(),open_alias().

Lookup Evaluation
The <al-lookup> tag now registers the lookup during template parsing rather than during evaluation. This

allows template code to make use of lookups that are defined later in the same file. The item dictionary is created
the first time that the lookup is used rather than when the template is interpreted.

Macro Argument Evaluation

Macro arguments are now evaluated when they are referenced rather than before they are passed to a macro.

This removes a limitation where you could not define macros including <al-form> tags that retrieved
<al-input> tags from their arguments. Previously the <al-input> tags passed as macro arguments would
have been evaluated outside of the context of the form defined in the macro. This effectively made the input tags
invisible to the form recorder.

<select>/<option> formatting

The <al-option> and <al-select> tags always write </option> close tags.

noescape tag attribute

The noescape attribute has been added to the <al-input>, <al-img>, <al-select>, and
<al-textarea> tags.

12.10. Release 1.10 193

Albatross Documentation, Release 1.40

Documentation

The templates reference documentation has been completely restructured to improve clarity. All attributes of each
tag have been documented.

12.10.2 Bug Fixes
Lingering Content Trap

In some circumstances exceptions would leave a content trap in place that prevented an error report from being
written to the browser.

Session Loading

More exceptions are trapped by the session unpickling code to make error handling more robust.

Random Page Module Loading

Fixed a bug where an import error inside a page module loaded by the RandomPageModuleMixin was being
handled as if page module could not be located.

Session Id Cookie Handling

Fixed cookie handling which previously could not cope with missing session id when the cookie was present.

<al-input> tag

Fixed bug in checkbox.

Only prevent the generation of the value attribute when the value is None.
<al-input> tag

The apacheapp Request class now works for mod_python 2.3 and 3.0.

194 Chapter 12. Summary of Changes

Symbols

__getstate__() (LazyTreelterator method), 120

__getstate__() (Listlterator method), 114

__init__() (AppContext method), 153

__init__() (Application method), 164

__init__() (BranchingSessionContext method), 164

__init__() (BranchingSessionMixin method), 140

__init__() (CachingTemplateL.oaderMixin method),
134

__init__ () (ExecuteMixin method), 132

__init__() (ModularApp method), 172

__init__() (ModularSessionApp method), 173

__init__() (ModularSessionFileApp method), 175

__init__() (NameRecorderMixin method), 135

__init__() (NamespaceMixin method), 136

__init__() (PageModuleMixin method), 144

__init__() (PageObjectMixin method), 146

__init__() (PickleSignMixin method), 142

__init__() (RandomModularApp method), 176

__init__() (RandomModularSessionApp method), 177

__init__() (RandomModularSessionFileApp method),
178

__init__() (ResourceMixin method), 132

__init__() (ResponseMixin method), 133

__init__() (SessionAppContext method), 158

__init__ () (SessionBase method), 138

__init__() (SessionFileAppContext method), 161

__init__() (SessionFileAppMixin method), 142

__init__() (SessionFileContextMixin method), 140

__init__() (SessionServerAppMixin method), 141

__init__() (SessionServerContextMixin method), 139

__init__() (SimpleApp method), 167

__init__() (SimpleAppContext method), 157

__init__() (SimpleSessionApp method), 168

__init__() (SimpleSessionFileApp method), 169

__init__() (TemplateLoaderMixin method), 134

__len__ () (Listlterator method), 114

__setstate__() (LazyTreelterator method), 120

_ setstate__ () (ListIterator method), 114

A

absolute_base_url() (AppContext method), 154
add_header() (ResponseMixin method), 133
add_session_vars() (SessionBase method), 138
add_session_vars() (StubSessionMixin method), 137

INDEX

albatross.ext.form (module), 75

albatross.template (module), 128

albatross_alias() (TreeNode method), 118

AlbatrossError, 60

app (AppContext attribute), 153

append() (albatross.ext.form.IteratorTable method), 79

append() (albatross.template.Content method), 130

append() (albatross.template.EnclosingTag method),
130

append_row()
method), 79

ApplicationError, 61

assert_any_attrib() (albatross.template.Tag method),
129

assert_has_attrib() (albatross.template.Tag method),
129

attrib_items() (albatross.template.Tag method), 129

B

base_url() (AppContext method), 154
base_url() (Application method), 164
Button (class in albatross.ext.form), 75
Buttons (class in albatross.ext.form), 75

C

Checkbox (class in albatross.ext.form), 75

children (TreeNode attribute), 117

children_loaded (TreeNode attribute), 117

clear() (albatross.ext.form.Form method), 78

clear_errors() (albatross.ext.form.Form method), 78

clear_locals() (AppContext method), 154

clear_locals() (NamespaceMixin method), 136

clear_value() (Listlterator method), 115

close_all() (Treelterator method), 119

Col (class in albatross.ext.form), 75

content (albatross.template.EnclosingTag attribute),
129

Content (class in albatross.template), 129

count() (Listlterator method), 114

create_context() (ModularApp method), 172

create_context() (ModularSessionApp method), 173

create_context() (ModularSessionFileApp method),
175

create_context() (RandomModularApp method), 176

create_context() (RandomModularSessionApp
method), 177

(albatross.ext.form.IteratorTable

195

Albatross Documentation, Release 1.40

create_context() (RandomModularSessionFileApp
method), 178

create_context() (SimpleApp method), 167

create_context() (SimpleSessionApp method), 168

create_context() (SimpleSessionFileApp method), 169

current_url() (AppContext method), 154

D

DataHTMLTag (class in albatross.ext.form), 75
decode_session() (SessionBase method), 138
default_session_var() (SessionBase method), 138
DefaultCSSStyles (class in albatross.ext.form), 76
del_header() (ResponseMixin method), 133
del_session() (SessionFileAppMixin method), 142
del_session() (SessionServerAppMixin method), 141
del_session_vars() (SessionBase method), 138
del_session_vars() (StubSessionMixin method), 137
depth() (Treelterator method), 118
deselect_all() (Treelterator method), 119
discard_file_resources() (ResourceMixin method), 132
display_response() (PageModuleMixin method), 144
display_response() (PageObjectMixin method), 147
display_response() (RandomPageModuleMixin
method), 146

E

EmptyTag (class in albatross.template), 128

EnclosingTag (class in albatross.template), 128

encode_session() (HiddenFieldSessionMixin method),
139

encode_session() (SessionBase method), 138

encode_session() (StubSessionMixin method), 137

end_headers() (Request method), 148

eval_expr() (NamespaceMixin method), 136

F

Field (class in albatross.ext.form), 76

field_file() (Request method), 147

field_names() (Request method), 147

field_value() (Request method), 147

Fieldset (class in albatross.ext.form), 77
FieldsetForm (class in albatross.ext.form), 77
FieldValidationError, 77

FloatField (class in albatross.ext.form), 77
flush_content() (ExecuteMixin method), 133
flush_html() (ExecuteMixin method), 133

Form (class in albatross.ext.form), 77

form_close() (BranchingSessionContext method), 164
form_close() (BranchingSessionMixin method), 141
form_close() (HiddenFieldSessionMixin method), 139
form_close() (NameRecorderMixin method), 135
form_close() (Simple AppContext method), 157
form_close() (StubRecorderMixin method), 135
form_open() (NameRecorderMixin method), 135
form_open() (StubRecorderMixin method), 135
format_exception() (Application method), 165
FormError, 78

FormOptions (class in albatross.ext.form), 78

FormValidationError, 78

G

get_attrib() (albatross.template.Tag method), 129

get_backdoor() (LazyTreelterator method), 120

get_backdoor() (Listlterator method), 114

get_display_value() (albatross.ext.form.DataHTMLTag
method), 76

get_header() (Request method), 148

get_header() (ResponseMixin method), 133

get_lookup() (AppContext method), 153

get_lookup() (ResourceMixin method), 132

get_macro() (AppContext method), 153

get_macro() (ResourceMixin method), 132

get_macro_arg() (ExecuteMixin method), 132

get_merge_value() (albatross.ext.form.DataHTMLTag

method), 76

get_merge_value() (albatross.ext.form.Field method),
77

get_merge_value() (albatross.ext.form.TextField
method), 80

get_open_aliases() (Treelterator method), 119

get_page_from_uri() (RandomPageModuleMixin
method), 145

get_selected_aliases() (Treelterator method), 119

get_servername() (Request method), 148

get_session() (SessionFileAppMixin method), 142

get_session() (SessionServerAppMixin method), 141

get_tagclass() (AppContext method), 153

get_tagclass() (ResourceMixin method), 132

get_uri() (Request method), 147

get_value() (albatross.ext.form.DataHTMLTag
method), 76

get_value() (NamespaceMixin method), 137

goto_page() (albatross.ext.form.IteratorTable method),
79

H

handle_exception() (Application method), 165
has_attrib() (albatross.template.Tag method), 129
has_children() (Treelterator method), 119
has_content() (albatross.template.EmptyTag method),

129
has_content() (albatross.template.EnclosingTag
method), 130

has_field() (Request method), 147
has_nextpage() (ListIterator method), 113
has_prevpage() (ListIterator method), 113
has_sequence() (ListIterator method), 115
has_value() (ListIterator method), 115
has_value() (NamespaceMixin method), 137
has_values() (NamespaceMixin method), 137
HeaderCol (class in albatross.ext.form), 79
HTMLTag (class in albatross.ext.form), 78
HTMLTreeTag (class in albatross.ext.form), 79

index() (ListIterator method), 114

196

Index

Albatross Documentation, Release 1.40

input_add() (NameRecorderMixin method), 135
input_add() (StubRecorderMixin method), 135
input_name_for_form() (albatross.ext.form.Field
method), 77
InputField (class in albatross.ext.form), 79
IntegerField (class in albatross.ext.form), 79
InternalError, 61
is_open() (Treelterator method), 118, 119
is_selected() (Treelterator method), 119
IteratorTable (class in albatross.ext.form), 79
IteratorTableRow (class in albatross.ext.form), 79

L

Label (class in albatross.ext.form), 80

line() (Treelterator method), 118

load() (albatross.ext.form.Field method), 77

load() (albatross.ext.form.Form method), 78

load_badurl_template() (RandomPageModuleMixin
method), 145

load_children() (TreeNode method), 118

load_page() (PageModuleMixin method), 144

load_page() (PageObjectMixin method), 146

load_page() (RandomPageModuleMixin method), 145

load_page_module() (PageModuleMixin method), 144

load_session() (Application method), 165

load_session() (BranchingSessionMixin method), 140

load_session() (HiddenFieldSessionMixin method),
139

load_session() (SessionFileContextMixin method), 140

load_session() (SessionServerContextMixin method),
139

load_session() (StubSessionMixin method), 137

load_template() (AppContext method), 154

load_template() (CachingTemplateLoaderMixin
method), 134

load_template() (TemplateLoaderMixin method), 134

load_template_once() (AppContext method), 154

load_template_once() (CachingTemplateL.oaderMixin
method), 135

load_template_once() (TemplateLoaderMixin method),
134

locals (NamespaceMixin attribute), 136

M

make_alias() (NamespaceMixin method), 137
merge() (albatross.ext.form.Field method), 77
merge() (albatross.ext.form.Form method), 78
merge_request() (Application method), 166
merge_request() (NameRecorderMixin method), 135
merge_request() (StubRecorderMixin method), 135
merge_vars() (NamespaceMixin method), 136
module_path() (PageModuleMixin method), 144
module_path() (PageObjectMixin method), 146

N

new_session() (SessionFileAppMixin method), 142
new_session() (SessionServerAppMixin method), 141
next() (ListIterator method), 115

node_is_open() (LazyTreelterator method), 120
node_is_open() (Treelterator method), 119
node_type() (EllipsisTreelterator method), 121
node_use_ellipsis() (EllipsisTreelterator method), 121

O

OptionsField (class in albatross.ext.form), 80

P

page_enter() (PageModuleMixin method), 144
page_enter() (PageObjectMixin method), 147
page_enter() (RandomPageModuleMixin method), 145
page_leave() (PageModuleMixin method), 144
page_leave() (PageObjectMixin method), 147
PageSelectionDisplayBase (class in albatross.ext.form),
80
pagesize() (Listlterator method), 113
PasswordField (class in albatross.ext.form), 80
pickle_sign() (Application method), 166
pickle_sign() (PickleSignMixin method), 142
pickle_unsign() (Application method), 166
pickle_unsign() (PickleSignMixin method), 143
pop_content_trap() (ExecuteMixin method), 133
pop_macro_args() (ExecuteMixin method), 133
pop_page() (AppContext method), 154
process_request() (PageModuleMixin method), 144
process_request() (PageObjectMixin method), 147
process_request() (RandomPageModuleMixin
method), 145
push_content_trap() (ExecuteMixin method), 133
push_macro_args() (ExecuteMixin method), 132
push_page() (AppContext method), 154
put_session() (SessionFileAppMixin method), 142
put_session() (SessionServerAppMixin method), 141

R

RadioField (class in albatross.ext.form), 80
raise_error() (albatross.template. Tag method), 129
redirect() (AppContext method), 154
redirect() (Request method), 148
redirect_url() (AppContext method), 154
register_lookup() (AppContext method), 153
register_lookup() (ResourceMixin method), 132
register_macro() (AppContext method), 153
register_macro() (ResourceMixin method), 132
register_page() (PageObjectMixin method), 146
register_tagclasses() (ResourceMixin method), 132
remove_session() (Application method), 165
remove_session() (BranchingSessionMixin method),
140
remove_session() (SessionBase method), 138
remove_session() (SessionFileContextMixin method),
140
remove_session()
method), 139
remove_session() (StubSessionMixin method), 137
req_equals() (AppContext method), 154
reset_content() (ExecuteMixin method), 133

(SessionServerContextMixin

Index

197

Albatross Documentation, Release 1.40

reset_count() (ListIterator method), 115
reset_index() (ListIterator method), 115
return_code() (Request method), 148

Row (class in albatross.ext.form), 80

run() (albatross.ext.form.Form method), 78
run() (Application method), 164

run_template() (AppContext method), 154
run_template_once() (AppContext method), 154

S

save_session() (Application method), 165

save_session() (BranchingSessionMixin method), 140

save_session() (HiddenFieldSessionMixin method),
139

save_session() (SessionFileContextMixin method), 140

save_session() (SessionServerContextMixin method),
139

save_session() (StubSessionMixin method), 137

SecurityError, 61

SelectField (class in albatross.ext.form), 80

send_content() (ExecuteMixin method), 133

send_content() (ResponseMixin method), 134

send_redirect() (ResponseMixin method), 134

ServerError, 61

ses_appid() (SessionFileAppMixin method), 142

ses_appid() (SessionServerAppMixin method), 141

sesid() (BranchingSessionMixin method), 140

sesid() (SessionFileContextMixin method), 140

sesid() (SessionServerContextMixin method), 139

session_vars() (SessionBase method), 138

SessionExpired, 61

set_attrib() (albatross.template.Tag method), 129

set_attrib_order() (albatross.template.Tag method), 129

set_backdoor() (LazyTreelterator method), 120

set_backdoor() (ListIterator method), 114

set_disabled() (albatross.ext.form.Form method), 78

set_globals() (NamespaceMixin method), 136

set_header() (ResponseMixin method), 133

set_line() (Treelterator method), 119

set_open_aliases() (Treelterator method), 120

set_options() (albatross.ext.form.OptionsField
method), 80

set_page() (AppContext method), 154

set_pagesize() (Listlterator method), 115

set_request() (AppContext method), 154

set_save_session() (SessionBase method), 138

set_save_session() (StubSessionMixin method), 137

set_selected_aliases() (Treelterator method), 119

set_sequence() (Listlterator method), 115

set_status() (Request method), 148

set_value() (LazyTreelterator method), 120

set_value() (ListIterator method), 115

set_value() (NamespaceMixin method), 136

set_value() (Treelterator method), 119

should_save_session() (SessionBase method), 138

should_save_session() (StubSessionMixin method),
138

span() (Treelterator method), 118

start() (ListIterator method), 114

start_page() (PageModuleMixin method), 144
start_page() (PageObjectMixin method), 146
StaticField (class in albatross.ext.form), 80
status() (Request method), 148

T

Table (class in albatross.ext.form), 80

Tag (class in albatross.template), 128

template_traceback() (Application method), 165

TemplateLoadError, 61

Text (class in albatross.template), 129

Textarea (class in albatross.ext.form), 81

TextField (class in albatross.ext.form), 80

to_html() (albatross.ext.form.Field method), 77

to_html() (albatross.ext.form.Form method), 78

to_html() (albatross.ext.form.IteratorTableRow
method), 80

to_html() (albatross.template.Content method), 130

to_html() (albatross.template. EmptyTag method), 129

to_html() (albatross.template.EnclosingTag method),
130

to_html() (albatross.template.Text method), 130

tree_depth() (Treelterator method), 118

U

UserError, 60

V

validate() (albatross.ext.form.Field method), 77
validate() (albatross.ext.form.Form method), 78
validate_request() (Application method), 165
value() (Listlterator method), 114

value() (Treelterator method), 118

W

write_attribs_except() (albatross.template.Tag method),
129

write_content() (albatross.ext.form.Form method), 78

write_content() (ExecuteMixin method), 133

write_content() (Request method), 148

write_errors_html() (albatross.ext.form.Field method),
77

write_form_html() (albatross.ext.form.Field method),
77

write_header() (Request method), 148

write_headers() (ResponseMixin method), 134

write_static_html() (albatross.ext.form.Field method),
77

198

Index

	Front Matter
	Thank you
	Introduction
	Installation
	Prerequisites
	Installing
	Testing

	Templates User Guide
	Introduction to CGI
	Your First Albatross Program
	Introducing Albatross Tags
	Eliminating the Application

	Building a Useful Application
	Albatross Macros
	Zero Argument Macros
	Single Argument Macros
	Multiple Argument Macros
	Nesting Macros

	Lookup Tables
	White Space Removal in Albatross
	Using Forms to Receive User Input
	Using Albatross Input Tags
	More on the <al-select> Tag
	Streaming Application Output to the Browser
	Displaying Tree Structured Data

	Guide to Building Applications
	Albatross Application Model
	Using Albatross Input Tags (Again)
	The Popview Application
	Adding Pagination Support to Popview
	Adding Server-Side Session Support to Popview
	Building Applications with Page Modules
	Random Access Applications
	The Albatross Session Server
	Sample Simple Session Server
	Unix Session Server Daemon
	Server Protocol

	Application Deployment Options
	CGI Deployment
	mod_python Deployment
	FastCGI Deployment
	Stand-alone Python HTTP Server Deployment

	Albatross Exceptions

	Extensions
	Albatross Forms Guide
	Concepts
	Getting started
	A simple example
	Flow of Control
	Field types
	A more complex example
	Customising Fields
	Attaching buttons to a form
	Table support
	Querying fields before merge

	Albatross Forms Reference

	Templates Reference
	Fake Application Harness
	Enhanced HTML Tags
	<al-form>
	<al-input>
	<al-select>
	<al-option>
	<al-textarea>
	<al-a>
	<al-img>

	Other HTML Tags
	Execution and Control Flow
	<al-require>
	<al-include>
	<al-comment>
	<al-flush>
	<al-if>/<al-elif>/<al-else>
	<al-value>
	<al-exec>
	<al-for>
	<al-lookup>
	<al-item>
	<al-tree>

	Macro Processing
	<al-macro>
	<al-usearg>
	<al-setdefault>
	<al-expand>
	<al-setarg>

	Developing Custom Tags
	albatross.template --- Base classes for implementing tags
	Tag Objects
	EmptyTag Objects
	EnclosingTag Objects
	Text Objects
	Content Objects

	Mixin Class Reference
	ResourceMixin Class
	ExecuteMixin Class
	ResponseMixin Class
	TemplateLoaderMixin Classes
	TemplateLoaderMixin
	CachingTemplateLoaderMixin

	RecorderMixin Classes
	StubRecorderMixin
	NameRecorderMixin

	NamespaceMixin Class
	SessionContextMixin Classes
	StubSessionMixin
	SessionBase
	HiddenFieldSessionMixin
	SessionServerContextMixin
	SessionFileContextMixin
	BranchingSessionMixin

	SessionAppMixin Classes
	SessionServerAppMixin
	SessionFileAppMixin

	PickleSignMixin Classes
	PageMixin Classes
	PageModuleMixin
	RandomPageModuleMixin
	PageObjectMixin

	Request Classes

	Prepackaged Application and Execution Context Classes
	The SimpleContext Execution Context
	The AppContext Base Class
	Context classes:
	The SimpleAppContext Class
	The SessionAppContext Class
	The SessionFileAppContext Class
	The BranchingSessionContext Class

	The Application Base Class
	Application Classes:
	The SimpleApp Class
	The SimpleSessionApp Class
	The SimpleSessionFileApp Class
	The ModularApp Class
	The ModularSessionApp Class
	The ModularSessionFileApp Class
	The RandomModularApp Class
	The RandomModularSessionApp Class
	The RandomModularSessionFileApp Class

	Summary of Changes
	Release 1.40.
	Major Changes
	Bug Fixes
	Miscellaneous Changes

	Release 1.36
	New Features
	Functional Changes
	Bug Fixes
	Miscellaneous Changes

	Release 1.35
	New Features
	Functional Changes
	Bug Fixes

	Release 1.33
	Bug Fixes

	Release 1.32
	Bug Fixes

	Release 1.31
	Bug Fixes

	Release 1.30
	Functional Changes
	Bug Fixes

	Release 1.20
	Functional Changes
	Bug Fixes

	Release 1.11
	Functional Changes
	Bug Fixes

	Release 1.10
	Functional Changes
	Bug Fixes

